Noninvasive Blood Glucose Measurement Using RF Spectroscopy and a LightGBM AI Model

We present a validation for a novel sensor and data processing pipeline designed to measure blood glucose (BG) noninvasively using the rapid collection of a broad range of radio frequency (RF) waves via a decoupled antenna array. Five healthy human subjects ingested 37.5 g of glucose solution to gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-09, Vol.24 (17), p.28049-28055
Hauptverfasser: Klyve, Dominic, Lowe, Steve, Currie, Kaptain, Anderson, James H., Ward, Carl, Shelton, Barry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a validation for a novel sensor and data processing pipeline designed to measure blood glucose (BG) noninvasively using the rapid collection of a broad range of radio frequency (RF) waves via a decoupled antenna array. Five healthy human subjects ingested 37.5 g of glucose solution to generate BG readings across two glycemic ranges: normoglycemic and hyperglycemic. Concurrent measurements from a continuous glucose monitor (CGM) and the RF sensor were collected for comparative analysis. A light gradient-boosting machine (LightGBM) model was trained to predict BG values using 1555 observations, where an observation is defined as data collected from 13 RF sensor sweeps paired with a single Dexcom G6 CGM value. Using this model, we predicted BG in the held-out test dataset with a mean absolute relative difference (MARD) of 12.7% in the normoglycemic range and 14.0% in the hyperglycemic range. While in early-stage validation, these results demonstrate the promise of this hardware and software technique for the noninvasive measurement of BG for practical application.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2024.3405800