Terahertz Sensing in a Hollow Core Photonic Crystal Fiber

A terahertz sensor based on a hollow core photonic crystal fiber has been proposed in this paper for chemical analyte detection in the terahertz frequency range. The Zeonex-based asymmetrical hollow core is filled with an analyte and surrounded by a number of asymmetrical rectangular air holes bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2018-05, Vol.18 (10), p.4073-4080
Hauptverfasser: Islam, Md Saiful, Sultana, Jakeya, Rifat, Ahmmed A., Dinovitser, Alex, Wai-Him Ng, Brian, Abbott, Derek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A terahertz sensor based on a hollow core photonic crystal fiber has been proposed in this paper for chemical analyte detection in the terahertz frequency range. The Zeonex-based asymmetrical hollow core is filled with an analyte and surrounded by a number of asymmetrical rectangular air holes bounded by a perfectly matched layer with absorbing boundary conditions. The performance of the proposed sensor is numerically investigated by using finite element method-based COMSOL software. It is found that a hollow core provides a high relative sensitivity as well as low transmission loss. Moreover, simplicity in design facilitates manufacturability, making it practical for a number of different biological and industrial applications.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2018.2819165