A Tensor-Based Pattern-Recognition Framework for the Interpretation of Touch Modality in Artificial Skin Systems

Artificial skin systems support human-robot interactions through touch. The interpretation of touch modalities indeed represents a crucial component for the future development of robots that can properly interact with humans. Independently of the specific employed transducer, one of the key issues i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2014-07, Vol.14 (7), p.2216-2225
Hauptverfasser: Gastaldo, Paolo, Pinna, Luigi, Seminara, Lucia, Valle, Maurizio, Zunino, Rodolfo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial skin systems support human-robot interactions through touch. The interpretation of touch modalities indeed represents a crucial component for the future development of robots that can properly interact with humans. Independently of the specific employed transducer, one of the key issues is how to process the massively complex and high-dimensional tactile data. In this paper, machine learning technologies (namely, support vector machines and extreme learning machines) support a pattern-recognition framework that can fully exploit the tensor morphology of the tactile signal. Furthermore, a practical strategy is provided to address the intricacies of the training procedure. Experimental results show the effectiveness of the proposed approach.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2014.2320820