Solvent Detection and Water Monitoring With a Macroporous Silicon Field-Effect Sensor
Integration of electrical and fluidic systems for the design and fabrication of a system-on-chip (SOC) capable of sensing various liquid phase solvents is reported. A monolithic integration strategy makes use of macroporous silicon (MPS) as a gateway to interface the electrical and fluidic domains....
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2007-03, Vol.7 (3), p.329-335 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Integration of electrical and fluidic systems for the design and fabrication of a system-on-chip (SOC) capable of sensing various liquid phase solvents is reported. A monolithic integration strategy makes use of macroporous silicon (MPS) as a gateway to interface the electrical and fluidic domains. In this application, the MPS material, acting as a sensing membrane, is used in a flow-through structure to transport an analyte from fluidic channels on one side of the chip to sensing electrodes on the other. A fluid-oxide-semiconductor interface results in the modulation of a space charge region in the semiconductor where real-time measurements are used to detect and distinguish between the presences of various solvents. The fluidic system has delivered sample volumes as small as 2 mul. Selected test solvents (i.e. acetone, ethanol, isopropyl alcohol, methanol, and toluene) have generated a measured change in capacitance up to 11%. A practical application of this sensor was demonstrated by monitoring various concentrations of isopropyl alcohol in a water supply. Undiluted samples provide characteristic responses that can be used for signature identification. The sensing device has a high degree of reusability and does not require heating or other solvent removal methods often necessitated in other sensing devices |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2006.890132 |