Generalized Transceiver Beamforming for DFRC With MIMO Radar and MU-MIMO Communication

Spatial beamforming is an efficient way to realize dual-functional radar-communication (DFRC). In this paper, we study the DFRC design for a general scenario, where the dual-functional base station (BS) simultaneously detects the target as a multiple-input-multiple-output (MIMO) radar while communic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2022-06, Vol.40 (6), p.1795-1808
Hauptverfasser: Chen, Li, Wang, Zhiqin, Du, Ying, Chen, Yunfei, Yu, F. Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatial beamforming is an efficient way to realize dual-functional radar-communication (DFRC). In this paper, we study the DFRC design for a general scenario, where the dual-functional base station (BS) simultaneously detects the target as a multiple-input-multiple-output (MIMO) radar while communicating with multiple multi-antenna communication users (CUs). This necessitates a joint transceiver beamforming design for both MIMO radar and multi-user MIMO (MU-MIMO) communication. In order to characterize the performance tradeoff between MIMO radar and MU-MIMO communication, we first define the achievable performance region of the DFRC system. Then, both radar-centric and communication-centric optimizations are formulated to achieve the boundary of the performance region. For the radar-centric optimization, successive convex approximation (SCA) method is adopted to solve the non-convex constraint. For the communication-centric optimization, a solution based on weighted mean square error (MSE) criterion is obtained to solve the non-convex objective function. Furthermore, two low-complexity beamforming designs based on CU-selection and zero-forcing are proposed to avoid iteration, and the closed-form expressions of the low-complexity beamforming designs are derived. Simulation results are provided to verify the effectiveness of all proposed designs.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2022.3155515