Generalized Transceiver Beamforming for DFRC With MIMO Radar and MU-MIMO Communication
Spatial beamforming is an efficient way to realize dual-functional radar-communication (DFRC). In this paper, we study the DFRC design for a general scenario, where the dual-functional base station (BS) simultaneously detects the target as a multiple-input-multiple-output (MIMO) radar while communic...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2022-06, Vol.40 (6), p.1795-1808 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spatial beamforming is an efficient way to realize dual-functional radar-communication (DFRC). In this paper, we study the DFRC design for a general scenario, where the dual-functional base station (BS) simultaneously detects the target as a multiple-input-multiple-output (MIMO) radar while communicating with multiple multi-antenna communication users (CUs). This necessitates a joint transceiver beamforming design for both MIMO radar and multi-user MIMO (MU-MIMO) communication. In order to characterize the performance tradeoff between MIMO radar and MU-MIMO communication, we first define the achievable performance region of the DFRC system. Then, both radar-centric and communication-centric optimizations are formulated to achieve the boundary of the performance region. For the radar-centric optimization, successive convex approximation (SCA) method is adopted to solve the non-convex constraint. For the communication-centric optimization, a solution based on weighted mean square error (MSE) criterion is obtained to solve the non-convex objective function. Furthermore, two low-complexity beamforming designs based on CU-selection and zero-forcing are proposed to avoid iteration, and the closed-form expressions of the low-complexity beamforming designs are derived. Simulation results are provided to verify the effectiveness of all proposed designs. |
---|---|
ISSN: | 0733-8716 1558-0008 |
DOI: | 10.1109/JSAC.2022.3155515 |