Joint Rate Control and Power Allocation for Non-Orthogonal Multiple Access Systems

This paper investigates the optimal resource allocation of a downlink non-orthogonal multiple access (NOMA) system consisting of one base station and multiple users. Unlike existing short-term NOMA designs that focused on the resource allocation for only the current transmission timeslot, we aim to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2017-12, Vol.35 (12), p.2798-2811
Hauptverfasser: Wei Bao, He Chen, Yonghui Li, Vucetic, Branka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the optimal resource allocation of a downlink non-orthogonal multiple access (NOMA) system consisting of one base station and multiple users. Unlike existing short-term NOMA designs that focused on the resource allocation for only the current transmission timeslot, we aim to maximize a long-term network utility by jointly optimizing the data rate control at the network layer and the power allocation among multiple users at the physical layer, subject to practical constraints on both the short-term and long-term power consumptions. To solve this problem, we leverage the recently developed Lyapunov optimization framework to convert the original long-term optimization problem into a series of online rate control and power allocation problems in each timeslot. The power allocation problem, however, is shown to be non-convex in nature and thus cannot be solved with a standard method. However, we explore two structures of the optimal solution and develop a dynamic programming-based power allocation algorithm, which can derive a globally optimal solution, with a polynomial computational complexity. Extensive simulation results are provided to evaluate the performance of the proposed joint rate control and power allocation framework for NOMA systems, which demonstrate that the proposed NOMA design can significantly outperform multiple benchmark schemes, including orthogonal multiple access schemes with optimal power allocation and NOMA schemes with non-optimal power allocation, in terms of average throughput and data delay.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2017.2726357