Full-Duplex Versus Half-Duplex Amplify-and-Forward Relaying: Which is More Energy Efficient in 60-GHz Dual-Hop Indoor Wireless Systems?

We provide a comprehensive energy efficiency (EE) analysis of the full-duplex (FD) and half-duplex (HD) amplify-and-forward (AF) relay-assisted 60-GHz dual-hop indoor wireless systems, aiming to answer the question of which relaying mode is greener (more energy efficient) and to address the issue of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2015-12, Vol.33 (12), p.2936-2947
Hauptverfasser: Wei, Zhongxiang, Zhu, Xu, Sun, Sumei, Huang, Yi, Dong, Linhao, Jiang, Yufei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a comprehensive energy efficiency (EE) analysis of the full-duplex (FD) and half-duplex (HD) amplify-and-forward (AF) relay-assisted 60-GHz dual-hop indoor wireless systems, aiming to answer the question of which relaying mode is greener (more energy efficient) and to address the issue of EE optimization. We develop an opportunistic relaying mode selection scheme, where FD relaying with one-stage self-interference cancellation (passive suppression) or two-stage self-interference cancellation (passive suppression + analog cancellation) or HD relaying is opportunistically selected, together with transmission power adaptation, to maximize the EE with given channel gains. A low-complexity joint mode selection and EE optimization algorithm are proposed. We show a counter-intuitive finding that with a relatively loose maximum transmission power constraint, FD relaying with two-stage self-interference cancellation is preferable to both FD relaying with one-stage self-interference cancellation and HD relaying, resulting in a higher optimized EE. A full range of power consumption sources is considered to rationalize our analysis. The effects of imperfect self-interference cancellation at relay, drain efficiency, and static circuit power on EE are investigated. Simulation results verify our theoretical analysis.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2015.2481211