Mathematical decomposition techniques for distributed cross-layer optimization of data networks
Network performance can be increased if the traditionally separated network layers are jointly optimized. Recently, network utility maximization has emerged as a powerful framework for studying such cross-layer issues. In this paper, we review and explain three distinct techniques that can be used t...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2006-08, Vol.24 (8), p.1535-1547 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Network performance can be increased if the traditionally separated network layers are jointly optimized. Recently, network utility maximization has emerged as a powerful framework for studying such cross-layer issues. In this paper, we review and explain three distinct techniques that can be used to engineer utility-maximizing protocols: primal, dual, and cross decomposition. The techniques suggest layered, but loosely coupled, network architectures and protocols where different resource allocation updates should be run at different time-scales. The decomposition methods are applied to the design of fully distributed protocols for two wireless network technologies: networks with orthogonal channels and network-wide resource constraints, as well as wireless networks where the physical layer uses spatial-reuse time-division multiple access. Numerical examples are included to demonstrate the power of the approach |
---|---|
ISSN: | 0733-8716 1558-0008 1558-0008 |
DOI: | 10.1109/JSAC.2006.879364 |