Mobility modeling and analytical solution for spatial traffic distribution in wireless multimedia networks

In this paper, we propose a general mobility model suitable for wireless multimedia networks. Our model is based on splitting a region into subregions. Furthermore, we make an analogy between subregions as well as their inter-connections with a multi-class Jackson queueing network comprising of infi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2003-12, Vol.21 (10), p.1699-1709
Hauptverfasser: Ashtiani, F., Salehi, J.A., Aref, M.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a general mobility model suitable for wireless multimedia networks. Our model is based on splitting a region into subregions. Furthermore, we make an analogy between subregions as well as their inter-connections with a multi-class Jackson queueing network comprising of infinite-server nodes. The main attribute of such a network is due to its product-form stationary distribution. Using this model, we are able to obtain a closed analytical form for the spatial traffic distribution corresponding to a specific number of network-connected users with different classes of service and mobility in a typical region. Also, we show the flexibility obtained by the proposed mobility model in representing some general distributions such as sum-of-hyper-exponentials (SOHYP), hyper-Erlang and Cox which were previously suggested to model mobility-related statistical parameters, e.g., cell dwell time and channel holding time. Finally, we apply the proposed model to a few mobility scenarios and obtain the resultant active user's location density.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2003.815680