Comparative Study of Mode Control in Vertical-Cavity Surface-Emitting Lasers With Photonic Crystal and Micropillar Etching
The dependence of spectral, power versus current and small-signal modulation characteristics versus the etch depth in two types of surface-etched vertical-cavity surface-emitting lasers (VCSELs) are experimentally and theoretically investigated. One type has a photonic crystal (PC) fabricated in the...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2011-09, Vol.47 (9), p.1257-1265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dependence of spectral, power versus current and small-signal modulation characteristics versus the etch depth in two types of surface-etched vertical-cavity surface-emitting lasers (VCSELs) are experimentally and theoretically investigated. One type has a photonic crystal (PC) fabricated in the top distributed Bragg reflector (DBR), whereas the second type has a micropillar (MP) created by removing the DBR surrounding it. The aim of both fabrication designs is to improve the single-mode high-power output. Theoretical and experimental results are found to be in qualitative agreement. It is shown that mode-selective optical losses, introduced by the etched holes of the PC in the DBR, control the optical modes of the PC-VCSEL. Single-fundamental-mode radiation is observed for deeply etched PC- and MP-VCSELs. In contrast, improved modulation characteristics are found for shallowly etched devices. Higher-order single-mode generation with improved modulation characteristics is demonstrated for PC-VCSELs with an etch depth of 1.54 μm. PC-VCSELs demonstrate higher slope efficiency, lower threshold current, and series resistance compared with MP-VCSELs of the same etching depth. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.2011.2161665 |