Power Scaling of Single-Frequency Hybrid Brillouin/Ytterbium Fiber Lasers
A coupled-wave rate-equation model, including multiple-order stimulated Brillouin scattering (SBS), is used to study power scaling of hybrid Brillouin/ytterbium fiber lasers. To validate the model, a single-frequency, Brillouin/ytterbium fiber laser was built with a laser output of 40 mW and an opti...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 2010-05, Vol.46 (5), p.674-682 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A coupled-wave rate-equation model, including multiple-order stimulated Brillouin scattering (SBS), is used to study power scaling of hybrid Brillouin/ytterbium fiber lasers. To validate the model, a single-frequency, Brillouin/ytterbium fiber laser was built with a laser output of 40 mW and an optical signal-to-noise ratio greater than 50 dB. The numerical model simulation agrees with the measurements in both fully and partially injection locked regimes. To scale up the laser's output power, a dual-clad architecture is proposed. In this new configuration, the active Yb-doped fiber provides the nonlinear SBS gain as well as the gain resulting from the excited Yb ions. Numerical modeling including three Stokes orders shows that over 5 W of single-frequency laser output can be achieved with a side-mode suppression ratio (SMSR) of greater than 80 dB. Beyond this power, multi-order SBS affects the laser efficiency and SMSR. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.2010.2047938 |