New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA)

A long-wavelength-band erbium-doped fiber amplifier (L-band EDFA) using a pump wavelength source of 1540-nm band has been extensively investigated from a small single channel input signal to high-power wavelength division multiplexing (WDM) signals. The small-signal gain coefficient of 1545-nm pumpi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2003-10, Vol.39 (10), p.1272-1280
Hauptverfasser: CHOI, Bo-Hun, PARK, Hyo-Hoon, CHU, Moo-Jung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A long-wavelength-band erbium-doped fiber amplifier (L-band EDFA) using a pump wavelength source of 1540-nm band has been extensively investigated from a small single channel input signal to high-power wavelength division multiplexing (WDM) signals. The small-signal gain coefficient of 1545-nm pumping among the 1540-nm band is 2.25 times higher compared to the conventional 1480-nm pumping. This improvement in gain coefficient is not limited by the pumping direction. The cause for this high coefficient is explained by analyzing forward- and backward-amplified spontaneous emission spectra. The gain spectra as a function of a pump wavelength suggest that a broadband pump source as well as a single wavelength pump can be used as a 1540-nm-band pump. In the experiment for high-power WDM signals, the power conversion efficiency for 256 WDM channel input is 48.5% with 1545-nm pumping. This result shows more than 20% improvement compared with the previous highest value for the L-band EDFA. Finally, the 1545-nm bidirectionally pumped EDFA is applied as a second stage amplifier in an in-line amplifier of an optical communication link with a 1480-nm pumped first stage EDFA, in which the input power of the second-stage EDFA is +2.2 dBm. The power conversion efficiency yields a 38% improvement without noise figure degradation compared with the case of 1480-nm pumping.
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2003.817582