Applications of Sparse Representation and Compressive Sensing [Scanning the Issue]

Sparse representation and compressive sensing establishes a more rigorous mathematical framework for studying high-dimensional data and ways to uncover the structures of the data, giving rise to a large repertoire of efficient algorithms. A sparse signal is a signal that can be represented as a line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2010-06, Vol.98 (6), p.906-909
Hauptverfasser: Baraniuk, Richard G., Candes, Emmanuel, Elad, Michael, Ma, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sparse representation and compressive sensing establishes a more rigorous mathematical framework for studying high-dimensional data and ways to uncover the structures of the data, giving rise to a large repertoire of efficient algorithms. A sparse signal is a signal that can be represented as a linear combination of relatively few base elements in a basis or an overcomplete dictionary. A sufficiently sparse linear representation can be correctly and efficiently computed by greedy methods and convex optimization (i.e., the l 1 -l 0 equivalence), even though this problem is extremely difficult-NP-hard in the general case.
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2010.2047424