Functional Pixel Circuits for Elastic AMOLED Displays

While fabrication of active matrix organic LED (AMOLED) displays on plastic substrates continues to face technological challenges, stable electrical operation of thin-film transistor (TFT) pixel circuits under mechanical stress induced by substrate bending remains a critical issue. This paper invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2005-07, Vol.93 (7), p.1257-1264
Hauptverfasser: Servati, P., Nathan, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While fabrication of active matrix organic LED (AMOLED) displays on plastic substrates continues to face technological challenges, stable electrical operation of thin-film transistor (TFT) pixel circuits under mechanical stress induced by substrate bending remains a critical issue. This paper investigates strain-induced shifts in hydrogenated amorphous silicon TFT characteristics and the compound impact on TFT circuit behavior. Measurements show that the magnitude of the shifts is determined by the direction of current flow in the TFT with respect to the bending stress orientation as well as bias conditions. Physically based compact models are developed that relate device characteristics to material behavior for design and optimization of AMOLED pixel circuits that can maintain immunity to bending stress. In particular, current mirror-based pixel circuits are presented that compensate for the long term threshold voltage shift and instantaneous strain-induced shifts in device characteristics.
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2005.851534