Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks

Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2019-07, Vol.9 (4), p.1073-1080
Hauptverfasser: Demant, Matthias, Virtue, Patrick, Kovvali, Aditya, Yu, Stella X., Rein, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1080
container_issue 4
container_start_page 1073
container_title IEEE journal of photovoltaics
container_volume 9
creator Demant, Matthias
Virtue, Patrick
Kovvali, Aditya
Yu, Stella X.
Rein, Stefan
description Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar cell production. This paper presents the results of two visualization techniques to understand what has been learned in the network. First, we reveal what has been learned in the PL image by visualizing the spatial quality distribution of the wafers based on the activation maps of the network. The method is denoted as regression activation mapping. We compare regression activation maps with j_0 images of solar cells to show the semantically meaningful representation of the trained features. Second, we show what has been learned in the data by mapping the learned network representation of all wafers into a low-dimensional subspace. Visualizations reveal the smoothness of our representation with respect to the PL input and measured quality. This technique can be used to detect material anomalies or process faults for samples with high prediction errors.
doi_str_mv 10.1109/JPHOTOV.2019.2906037
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2019_2906037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8684873</ieee_id><sourcerecordid>2244363151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2607-8da8d13a4da1082b2edb7cd7fe27d56187baa61d95501408b5ab8b5bd7fca69a3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiQT9BXrRxOthv9Z1l4aoaFBUEC-Xs7XD4lix3TT46x0BPRfnK-9zcvIidE7JgFKSXt4_jSazyXzACE0HLCWS8OQA9RiNZcQF4Yd_PVf0GJ2GsCRdSBJLKXrofW5DC5X9sfUCP0BjvIUKP29XzQZDrfHUrmwFfju6Eq-KaGrxG5TGBzw24Gujcb7BQ1d_uaptrKs7_sUsvAmhG_Cjab6d_wgn6KiEKpjTfe2j15vr2XAUjSe3d8OrcVQwSZJIaVCachAaKFEsZ0bnSaGT0rBEx5KqJAeQVKdxTKggKo8h71LeKQqQKfA-utjdXXv32ZrQZEvX-u6pkDEmBJecxrRTiZ2q8C4Eb8ps7e0K_CajJNvamu1tzba2ZntbO-xsh1ljzD-ipBIq4fwXvlR10g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244363151</pqid></control><display><type>article</type><title>Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Demant, Matthias ; Virtue, Patrick ; Kovvali, Aditya ; Yu, Stella X. ; Rein, Stefan</creator><creatorcontrib>Demant, Matthias ; Virtue, Patrick ; Kovvali, Aditya ; Yu, Stella X. ; Rein, Stefan</creatorcontrib><description>Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar cell production. This paper presents the results of two visualization techniques to understand what has been learned in the network. First, we reveal what has been learned in the PL image by visualizing the spatial quality distribution of the wafers based on the activation maps of the network. The method is denoted as regression activation mapping. We compare regression activation maps with &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;j_0&lt;/tex-math&gt;&lt;/inline-formula&gt; images of solar cells to show the semantically meaningful representation of the trained features. Second, we show what has been learned in the data by mapping the learned network representation of all wafers into a low-dimensional subspace. Visualizations reveal the smoothness of our representation with respect to the PL input and measured quality. This technique can be used to detect material anomalies or process faults for samples with high prediction errors.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2019.2906037</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Activation ; Anomalies ; Artificial neural networks ; Convolutional neural network (CNN) ; Data visualization ; densely connected convolutional neural network (denseNet) ; Fault detection ; Feature extraction ; Image quality ; machine learning ; Mapping ; material ; multicrystalline silicon (mc-Si) ; passivated emitter and rear cell ; Photoluminescence ; photoluminescence (PL) ; Photovoltaic cells ; Production ; Quality assessment ; rating ; Regression ; regression activation mapping ; Representations ; Semiconductor device modeling ; Silicon ; Silicon wafers ; Smoothness ; solar cell ; Solar cells ; t-distributed stochastic neighborhood embedding (t-SNE) ; Training ; Wafers</subject><ispartof>IEEE journal of photovoltaics, 2019-07, Vol.9 (4), p.1073-1080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2607-8da8d13a4da1082b2edb7cd7fe27d56187baa61d95501408b5ab8b5bd7fca69a3</citedby><cites>FETCH-LOGICAL-c2607-8da8d13a4da1082b2edb7cd7fe27d56187baa61d95501408b5ab8b5bd7fca69a3</cites><orcidid>0000-0001-5519-1455 ; 0000-0003-3523-5021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8684873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8684873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Demant, Matthias</creatorcontrib><creatorcontrib>Virtue, Patrick</creatorcontrib><creatorcontrib>Kovvali, Aditya</creatorcontrib><creatorcontrib>Yu, Stella X.</creatorcontrib><creatorcontrib>Rein, Stefan</creatorcontrib><title>Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar cell production. This paper presents the results of two visualization techniques to understand what has been learned in the network. First, we reveal what has been learned in the PL image by visualizing the spatial quality distribution of the wafers based on the activation maps of the network. The method is denoted as regression activation mapping. We compare regression activation maps with &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;j_0&lt;/tex-math&gt;&lt;/inline-formula&gt; images of solar cells to show the semantically meaningful representation of the trained features. Second, we show what has been learned in the data by mapping the learned network representation of all wafers into a low-dimensional subspace. Visualizations reveal the smoothness of our representation with respect to the PL input and measured quality. This technique can be used to detect material anomalies or process faults for samples with high prediction errors.</description><subject>Activation</subject><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Convolutional neural network (CNN)</subject><subject>Data visualization</subject><subject>densely connected convolutional neural network (denseNet)</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Image quality</subject><subject>machine learning</subject><subject>Mapping</subject><subject>material</subject><subject>multicrystalline silicon (mc-Si)</subject><subject>passivated emitter and rear cell</subject><subject>Photoluminescence</subject><subject>photoluminescence (PL)</subject><subject>Photovoltaic cells</subject><subject>Production</subject><subject>Quality assessment</subject><subject>rating</subject><subject>Regression</subject><subject>regression activation mapping</subject><subject>Representations</subject><subject>Semiconductor device modeling</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Smoothness</subject><subject>solar cell</subject><subject>Solar cells</subject><subject>t-distributed stochastic neighborhood embedding (t-SNE)</subject><subject>Training</subject><subject>Wafers</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiQT9BXrRxOthv9Z1l4aoaFBUEC-Xs7XD4lix3TT46x0BPRfnK-9zcvIidE7JgFKSXt4_jSazyXzACE0HLCWS8OQA9RiNZcQF4Yd_PVf0GJ2GsCRdSBJLKXrofW5DC5X9sfUCP0BjvIUKP29XzQZDrfHUrmwFfju6Eq-KaGrxG5TGBzw24Gujcb7BQ1d_uaptrKs7_sUsvAmhG_Cjab6d_wgn6KiEKpjTfe2j15vr2XAUjSe3d8OrcVQwSZJIaVCachAaKFEsZ0bnSaGT0rBEx5KqJAeQVKdxTKggKo8h71LeKQqQKfA-utjdXXv32ZrQZEvX-u6pkDEmBJecxrRTiZ2q8C4Eb8ps7e0K_CajJNvamu1tzba2ZntbO-xsh1ljzD-ipBIq4fwXvlR10g</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Demant, Matthias</creator><creator>Virtue, Patrick</creator><creator>Kovvali, Aditya</creator><creator>Yu, Stella X.</creator><creator>Rein, Stefan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5519-1455</orcidid><orcidid>https://orcid.org/0000-0003-3523-5021</orcidid></search><sort><creationdate>20190701</creationdate><title>Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks</title><author>Demant, Matthias ; Virtue, Patrick ; Kovvali, Aditya ; Yu, Stella X. ; Rein, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2607-8da8d13a4da1082b2edb7cd7fe27d56187baa61d95501408b5ab8b5bd7fca69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Convolutional neural network (CNN)</topic><topic>Data visualization</topic><topic>densely connected convolutional neural network (denseNet)</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Image quality</topic><topic>machine learning</topic><topic>Mapping</topic><topic>material</topic><topic>multicrystalline silicon (mc-Si)</topic><topic>passivated emitter and rear cell</topic><topic>Photoluminescence</topic><topic>photoluminescence (PL)</topic><topic>Photovoltaic cells</topic><topic>Production</topic><topic>Quality assessment</topic><topic>rating</topic><topic>Regression</topic><topic>regression activation mapping</topic><topic>Representations</topic><topic>Semiconductor device modeling</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Smoothness</topic><topic>solar cell</topic><topic>Solar cells</topic><topic>t-distributed stochastic neighborhood embedding (t-SNE)</topic><topic>Training</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demant, Matthias</creatorcontrib><creatorcontrib>Virtue, Patrick</creatorcontrib><creatorcontrib>Kovvali, Aditya</creatorcontrib><creatorcontrib>Yu, Stella X.</creatorcontrib><creatorcontrib>Rein, Stefan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Demant, Matthias</au><au>Virtue, Patrick</au><au>Kovvali, Aditya</au><au>Yu, Stella X.</au><au>Rein, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>9</volume><issue>4</issue><spage>1073</spage><epage>1080</epage><pages>1073-1080</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar cell production. This paper presents the results of two visualization techniques to understand what has been learned in the network. First, we reveal what has been learned in the PL image by visualizing the spatial quality distribution of the wafers based on the activation maps of the network. The method is denoted as regression activation mapping. We compare regression activation maps with &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;j_0&lt;/tex-math&gt;&lt;/inline-formula&gt; images of solar cells to show the semantically meaningful representation of the trained features. Second, we show what has been learned in the data by mapping the learned network representation of all wafers into a low-dimensional subspace. Visualizations reveal the smoothness of our representation with respect to the PL input and measured quality. This technique can be used to detect material anomalies or process faults for samples with high prediction errors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2019.2906037</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5519-1455</orcidid><orcidid>https://orcid.org/0000-0003-3523-5021</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2019-07, Vol.9 (4), p.1073-1080
issn 2156-3381
2156-3403
language eng
recordid cdi_crossref_primary_10_1109_JPHOTOV_2019_2906037
source IEEE Electronic Library (IEL)
subjects Activation
Anomalies
Artificial neural networks
Convolutional neural network (CNN)
Data visualization
densely connected convolutional neural network (denseNet)
Fault detection
Feature extraction
Image quality
machine learning
Mapping
material
multicrystalline silicon (mc-Si)
passivated emitter and rear cell
Photoluminescence
photoluminescence (PL)
Photovoltaic cells
Production
Quality assessment
rating
Regression
regression activation mapping
Representations
Semiconductor device modeling
Silicon
Silicon wafers
Smoothness
solar cell
Solar cells
t-distributed stochastic neighborhood embedding (t-SNE)
Training
Wafers
title Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20Material%20Quality%20and%20Similarity%20of%20mc-Si%20Wafers%20Learned%20by%20Convolutional%20Regression%20Networks&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Demant,%20Matthias&rft.date=2019-07-01&rft.volume=9&rft.issue=4&rft.spage=1073&rft.epage=1080&rft.pages=1073-1080&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2019.2906037&rft_dat=%3Cproquest_RIE%3E2244363151%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244363151&rft_id=info:pmid/&rft_ieee_id=8684873&rfr_iscdi=true