Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks
Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2019-07, Vol.9 (4), p.1073-1080 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1080 |
---|---|
container_issue | 4 |
container_start_page | 1073 |
container_title | IEEE journal of photovoltaics |
container_volume | 9 |
creator | Demant, Matthias Virtue, Patrick Kovvali, Aditya Yu, Stella X. Rein, Stefan |
description | Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar cell production. This paper presents the results of two visualization techniques to understand what has been learned in the network. First, we reveal what has been learned in the PL image by visualizing the spatial quality distribution of the wafers based on the activation maps of the network. The method is denoted as regression activation mapping. We compare regression activation maps with j_0 images of solar cells to show the semantically meaningful representation of the trained features. Second, we show what has been learned in the data by mapping the learned network representation of all wafers into a low-dimensional subspace. Visualizations reveal the smoothness of our representation with respect to the PL input and measured quality. This technique can be used to detect material anomalies or process faults for samples with high prediction errors. |
doi_str_mv | 10.1109/JPHOTOV.2019.2906037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JPHOTOV_2019_2906037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8684873</ieee_id><sourcerecordid>2244363151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2607-8da8d13a4da1082b2edb7cd7fe27d56187baa61d95501408b5ab8b5bd7fca69a3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiQT9BXrRxOthv9Z1l4aoaFBUEC-Xs7XD4lix3TT46x0BPRfnK-9zcvIidE7JgFKSXt4_jSazyXzACE0HLCWS8OQA9RiNZcQF4Yd_PVf0GJ2GsCRdSBJLKXrofW5DC5X9sfUCP0BjvIUKP29XzQZDrfHUrmwFfju6Eq-KaGrxG5TGBzw24Gujcb7BQ1d_uaptrKs7_sUsvAmhG_Cjab6d_wgn6KiEKpjTfe2j15vr2XAUjSe3d8OrcVQwSZJIaVCachAaKFEsZ0bnSaGT0rBEx5KqJAeQVKdxTKggKo8h71LeKQqQKfA-utjdXXv32ZrQZEvX-u6pkDEmBJecxrRTiZ2q8C4Eb8ps7e0K_CajJNvamu1tzba2ZntbO-xsh1ljzD-ipBIq4fwXvlR10g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244363151</pqid></control><display><type>article</type><title>Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Demant, Matthias ; Virtue, Patrick ; Kovvali, Aditya ; Yu, Stella X. ; Rein, Stefan</creator><creatorcontrib>Demant, Matthias ; Virtue, Patrick ; Kovvali, Aditya ; Yu, Stella X. ; Rein, Stefan</creatorcontrib><description>Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar cell production. This paper presents the results of two visualization techniques to understand what has been learned in the network. First, we reveal what has been learned in the PL image by visualizing the spatial quality distribution of the wafers based on the activation maps of the network. The method is denoted as regression activation mapping. We compare regression activation maps with <inline-formula><tex-math notation="LaTeX">j_0</tex-math></inline-formula> images of solar cells to show the semantically meaningful representation of the trained features. Second, we show what has been learned in the data by mapping the learned network representation of all wafers into a low-dimensional subspace. Visualizations reveal the smoothness of our representation with respect to the PL input and measured quality. This technique can be used to detect material anomalies or process faults for samples with high prediction errors.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2019.2906037</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Activation ; Anomalies ; Artificial neural networks ; Convolutional neural network (CNN) ; Data visualization ; densely connected convolutional neural network (denseNet) ; Fault detection ; Feature extraction ; Image quality ; machine learning ; Mapping ; material ; multicrystalline silicon (mc-Si) ; passivated emitter and rear cell ; Photoluminescence ; photoluminescence (PL) ; Photovoltaic cells ; Production ; Quality assessment ; rating ; Regression ; regression activation mapping ; Representations ; Semiconductor device modeling ; Silicon ; Silicon wafers ; Smoothness ; solar cell ; Solar cells ; t-distributed stochastic neighborhood embedding (t-SNE) ; Training ; Wafers</subject><ispartof>IEEE journal of photovoltaics, 2019-07, Vol.9 (4), p.1073-1080</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2607-8da8d13a4da1082b2edb7cd7fe27d56187baa61d95501408b5ab8b5bd7fca69a3</citedby><cites>FETCH-LOGICAL-c2607-8da8d13a4da1082b2edb7cd7fe27d56187baa61d95501408b5ab8b5bd7fca69a3</cites><orcidid>0000-0001-5519-1455 ; 0000-0003-3523-5021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8684873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8684873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Demant, Matthias</creatorcontrib><creatorcontrib>Virtue, Patrick</creatorcontrib><creatorcontrib>Kovvali, Aditya</creatorcontrib><creatorcontrib>Yu, Stella X.</creatorcontrib><creatorcontrib>Rein, Stefan</creatorcontrib><title>Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar cell production. This paper presents the results of two visualization techniques to understand what has been learned in the network. First, we reveal what has been learned in the PL image by visualizing the spatial quality distribution of the wafers based on the activation maps of the network. The method is denoted as regression activation mapping. We compare regression activation maps with <inline-formula><tex-math notation="LaTeX">j_0</tex-math></inline-formula> images of solar cells to show the semantically meaningful representation of the trained features. Second, we show what has been learned in the data by mapping the learned network representation of all wafers into a low-dimensional subspace. Visualizations reveal the smoothness of our representation with respect to the PL input and measured quality. This technique can be used to detect material anomalies or process faults for samples with high prediction errors.</description><subject>Activation</subject><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Convolutional neural network (CNN)</subject><subject>Data visualization</subject><subject>densely connected convolutional neural network (denseNet)</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Image quality</subject><subject>machine learning</subject><subject>Mapping</subject><subject>material</subject><subject>multicrystalline silicon (mc-Si)</subject><subject>passivated emitter and rear cell</subject><subject>Photoluminescence</subject><subject>photoluminescence (PL)</subject><subject>Photovoltaic cells</subject><subject>Production</subject><subject>Quality assessment</subject><subject>rating</subject><subject>Regression</subject><subject>regression activation mapping</subject><subject>Representations</subject><subject>Semiconductor device modeling</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Smoothness</subject><subject>solar cell</subject><subject>Solar cells</subject><subject>t-distributed stochastic neighborhood embedding (t-SNE)</subject><subject>Training</subject><subject>Wafers</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiQT9BXrRxOthv9Z1l4aoaFBUEC-Xs7XD4lix3TT46x0BPRfnK-9zcvIidE7JgFKSXt4_jSazyXzACE0HLCWS8OQA9RiNZcQF4Yd_PVf0GJ2GsCRdSBJLKXrofW5DC5X9sfUCP0BjvIUKP29XzQZDrfHUrmwFfju6Eq-KaGrxG5TGBzw24Gujcb7BQ1d_uaptrKs7_sUsvAmhG_Cjab6d_wgn6KiEKpjTfe2j15vr2XAUjSe3d8OrcVQwSZJIaVCachAaKFEsZ0bnSaGT0rBEx5KqJAeQVKdxTKggKo8h71LeKQqQKfA-utjdXXv32ZrQZEvX-u6pkDEmBJecxrRTiZ2q8C4Eb8ps7e0K_CajJNvamu1tzba2ZntbO-xsh1ljzD-ipBIq4fwXvlR10g</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Demant, Matthias</creator><creator>Virtue, Patrick</creator><creator>Kovvali, Aditya</creator><creator>Yu, Stella X.</creator><creator>Rein, Stefan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5519-1455</orcidid><orcidid>https://orcid.org/0000-0003-3523-5021</orcidid></search><sort><creationdate>20190701</creationdate><title>Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks</title><author>Demant, Matthias ; Virtue, Patrick ; Kovvali, Aditya ; Yu, Stella X. ; Rein, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2607-8da8d13a4da1082b2edb7cd7fe27d56187baa61d95501408b5ab8b5bd7fca69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Convolutional neural network (CNN)</topic><topic>Data visualization</topic><topic>densely connected convolutional neural network (denseNet)</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Image quality</topic><topic>machine learning</topic><topic>Mapping</topic><topic>material</topic><topic>multicrystalline silicon (mc-Si)</topic><topic>passivated emitter and rear cell</topic><topic>Photoluminescence</topic><topic>photoluminescence (PL)</topic><topic>Photovoltaic cells</topic><topic>Production</topic><topic>Quality assessment</topic><topic>rating</topic><topic>Regression</topic><topic>regression activation mapping</topic><topic>Representations</topic><topic>Semiconductor device modeling</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Smoothness</topic><topic>solar cell</topic><topic>Solar cells</topic><topic>t-distributed stochastic neighborhood embedding (t-SNE)</topic><topic>Training</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demant, Matthias</creatorcontrib><creatorcontrib>Virtue, Patrick</creatorcontrib><creatorcontrib>Kovvali, Aditya</creatorcontrib><creatorcontrib>Yu, Stella X.</creatorcontrib><creatorcontrib>Rein, Stefan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Demant, Matthias</au><au>Virtue, Patrick</au><au>Kovvali, Aditya</au><au>Yu, Stella X.</au><au>Rein, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>9</volume><issue>4</issue><spage>1073</spage><epage>1080</epage><pages>1073-1080</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar cell production. This paper presents the results of two visualization techniques to understand what has been learned in the network. First, we reveal what has been learned in the PL image by visualizing the spatial quality distribution of the wafers based on the activation maps of the network. The method is denoted as regression activation mapping. We compare regression activation maps with <inline-formula><tex-math notation="LaTeX">j_0</tex-math></inline-formula> images of solar cells to show the semantically meaningful representation of the trained features. Second, we show what has been learned in the data by mapping the learned network representation of all wafers into a low-dimensional subspace. Visualizations reveal the smoothness of our representation with respect to the PL input and measured quality. This technique can be used to detect material anomalies or process faults for samples with high prediction errors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2019.2906037</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5519-1455</orcidid><orcidid>https://orcid.org/0000-0003-3523-5021</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2019-07, Vol.9 (4), p.1073-1080 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JPHOTOV_2019_2906037 |
source | IEEE Electronic Library (IEL) |
subjects | Activation Anomalies Artificial neural networks Convolutional neural network (CNN) Data visualization densely connected convolutional neural network (denseNet) Fault detection Feature extraction Image quality machine learning Mapping material multicrystalline silicon (mc-Si) passivated emitter and rear cell Photoluminescence photoluminescence (PL) Photovoltaic cells Production Quality assessment rating Regression regression activation mapping Representations Semiconductor device modeling Silicon Silicon wafers Smoothness solar cell Solar cells t-distributed stochastic neighborhood embedding (t-SNE) Training Wafers |
title | Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20Material%20Quality%20and%20Similarity%20of%20mc-Si%20Wafers%20Learned%20by%20Convolutional%20Regression%20Networks&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Demant,%20Matthias&rft.date=2019-07-01&rft.volume=9&rft.issue=4&rft.spage=1073&rft.epage=1080&rft.pages=1073-1080&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2019.2906037&rft_dat=%3Cproquest_RIE%3E2244363151%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244363151&rft_id=info:pmid/&rft_ieee_id=8684873&rfr_iscdi=true |