Visualizing Material Quality and Similarity of mc-Si Wafers Learned by Convolutional Regression Networks

Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2019-07, Vol.9 (4), p.1073-1080
Hauptverfasser: Demant, Matthias, Virtue, Patrick, Kovvali, Aditya, Yu, Stella X., Rein, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convolutional neural networks can be trained to assess the material quality of multicrystalline silicon wafers. A successful rating model has been presented in a related work, which directly evaluates the photoluminescence (PL) image of the wafer to predict the current-voltage parameters after solar cell production. This paper presents the results of two visualization techniques to understand what has been learned in the network. First, we reveal what has been learned in the PL image by visualizing the spatial quality distribution of the wafers based on the activation maps of the network. The method is denoted as regression activation mapping. We compare regression activation maps with j_0 images of solar cells to show the semantically meaningful representation of the trained features. Second, we show what has been learned in the data by mapping the learned network representation of all wafers into a low-dimensional subspace. Visualizations reveal the smoothness of our representation with respect to the PL input and measured quality. This technique can be used to detect material anomalies or process faults for samples with high prediction errors.
ISSN:2156-3381
2156-3403
DOI:10.1109/JPHOTOV.2019.2906037