Full-Scale Mine Burial Experiments in Wave and Current Environments and Comparison With Models
A mine burial field experiment was carried out on two sandy seafloors between January and April 2004 in the Bay of Brest, France. Burial recording mines (BRMs) were used to measure burial and mine orientation at 15-min intervals. Sonar and bottom photographs were also used to characterize sediment m...
Gespeichert in:
Veröffentlicht in: | IEEE journal of oceanic engineering 2007-01, Vol.32 (1), p.119-132 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A mine burial field experiment was carried out on two sandy seafloors between January and April 2004 in the Bay of Brest, France. Burial recording mines (BRMs) were used to measure burial and mine orientation at 15-min intervals. Sonar and bottom photographs were also used to characterize sediment morphology and mine burial. These observations are compared with the predictions of mine burial using the following three models: a momentary liquefaction model, a current-induced scour model, and a wave-induced scour model. Analysis combines mine burial data, sediment data, seabed observations, and hydrodynamic measurements. At the first site, ldquoRascas,rdquo the seabed dynamics are dominated by tides and river runoff. Almost no mine burial was measured during the experiment which is in agreement with predictions of mine burial models (current-induced scour and liquefaction). Dynamics at the second site, ldquoBertheaume,rdquo are driven by tides and ocean waves. A long storm (one week) and several swell events were experienced and significant mine burial was observed in conjunction with high significant waveheights. Mine burial models suggest that burial at ldquoBertheaumerdquo was dominated by wave-induced scour rather than current-induced scour or momentary liquefaction. |
---|---|
ISSN: | 0364-9059 1558-1691 |
DOI: | 10.1109/JOE.2007.890951 |