Broadband Back-Short Transition From Waveguide to Thin Substrate-Integrated Waveguide in Multilayer Substrate in 270-GHz Band
A broadband right-angle transition from a rectangular waveguide (RWG) to a substrate-integrated waveguide (SIW) with a small narrow-wall width is proposed in the 270 GHz band. Generally, it is difficult to design a broadband transition from a standard RWG to an SIW with a small narrow-wall width owi...
Gespeichert in:
Veröffentlicht in: | IEEE journal of microwaves 2025-01, Vol.5 (1), p.180-189 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A broadband right-angle transition from a rectangular waveguide (RWG) to a substrate-integrated waveguide (SIW) with a small narrow-wall width is proposed in the 270 GHz band. Generally, it is difficult to design a broadband transition from a standard RWG to an SIW with a small narrow-wall width owing to the small characteristic impedance of the SIW. In this study, wideband characteristics are obtained by placing via holes in a multilayer substrate and forming back-short structures, short stubs, and inductive pins. By varying the positions of the via holes, the two resonant frequencies are independently controlled to achieve a broad bandwidth exceeding 26%. To verify this design, back-to-back DUTs (devices under test) were fabricated and measured in the sub-terahertz band. The measured and simulated results are in good agreement. The measured insertion loss is approximately 1.1 dB at a design frequency of 275 GHz, and the measured reflection loss is less than −10 dB from 234 GHz to 308 GHz. |
---|---|
ISSN: | 2692-8388 2692-8388 |
DOI: | 10.1109/JMW.2024.3481629 |