Vacuum-Sealed MEMS Resonators Based on Silicon Migration Sealing and Hydrogen Diffusion
In this study, we introduce an innovative approach to vacuum-encapsulation of MEMS resonators using Silicon Migration Seal (SMS) technology, a novel wafer-level vacuum packaging method. SMS utilizes silicon reflow phenomena under high-temperature (>1000°C) hydrogen environments to seal release ho...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2024-06, Vol.33 (3), p.369-375 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we introduce an innovative approach to vacuum-encapsulation of MEMS resonators using Silicon Migration Seal (SMS) technology, a novel wafer-level vacuum packaging method. SMS utilizes silicon reflow phenomena under high-temperature (>1000°C) hydrogen environments to seal release holes effectively. We successfully demonstrated this technique on a MEMS resonator made on a standard SOI wafer, commonly used in inertial sensors and timing devices. After the encapsulation, hydrogen diffusion from the sealed cavity was performed through annealing at 430°C for 27 hours in a nitrogen environment. Further analysis using focused ion beam (FIB) penetration outside the resonating element confirmed an impressive vacuum level improvement in the sealed cavity, estimated at ~60 Pa. Notably, after additional air-baking at 145°C, the maintained high Q factor suggests a potential vacuum level below 10 Pa. These findings not only illustrate the efficiency of SMS in wafer-level vacuum packaging but also open up possibilities for optimizing sealing pressure in MEMS packaging. [2024-0014] |
---|---|
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2024.3382768 |