Monolithic, 3D-Printed Microfluidic Platform for Recapitulation of Dynamic Tumor Microenvironments

We report the development of an entirely 3D-printed, monolithic microfluidic platform that provides a dynamic microenvironment for perfusing and sustaining tumor fragments from a biopsy sample. The finely featured, noncytotoxic, and transparent tumor trap is integrated with threaded connectors for r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2018-12, Vol.27 (6), p.1009-1022
Hauptverfasser: Beckwith, Ashley L., Borenstein, Jeffrey T., Velasquez-Garcia, Luis Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the development of an entirely 3D-printed, monolithic microfluidic platform that provides a dynamic microenvironment for perfusing and sustaining tumor fragments from a biopsy sample. The finely featured, noncytotoxic, and transparent tumor trap is integrated with threaded connectors for rapid, leak-proof fluid interfacing, an in-line trap for removal of bubbles arising from oxygenated media flow or tumor loading procedures, and a network of microchannels for supplying media (and potentially immune cells) to the trapped tumor fragment. The devices were additively manufactured in Pro3dure GR-10 -a relatively new, high-resolution stereolithographic resin with properties suitable for biomedical applications requiring interrogation via fluorescence microscopy. Overlaid bright-field and fluorescence microscopy images demonstrate trapping of human tumor fragments by the printed microfluidic device, as well as visualization of individual cells within the fragment. A multi-day trapping experiment evidences the ability to sustain a live tumor fragment under dynamic perfusion within the device-a configuration capable of modeling of interactions between tumors and various drug treatments in the presence of circulating immune cells, e.g., for assessment of the efficacy of chemotherapy and immunotherapy treatments.
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2018.2869327