Fabrication and Characterization of Three-Dimensional Microlens Arrays in Sol-Gel Glass

We propose a new replication process for the realization of thick microlenses in SiO 2 glass with low organic content. We start by replicating an array of cylindrical micropillars made in SU-8 negative photoresist (Microchem) into poly-dimethylsiloxane (PDMS). The PDMS replica is filled with a photo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2006-10, Vol.15 (5), p.1159-1164
Hauptverfasser: Orhan, J.-B., Parashar, V.K., Sayah, A., Gijs, M.A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new replication process for the realization of thick microlenses in SiO 2 glass with low organic content. We start by replicating an array of cylindrical micropillars made in SU-8 negative photoresist (Microchem) into poly-dimethylsiloxane (PDMS). The PDMS replica is filled with a photoresist (Clariant AZ 9260), applied to a glass substrate and soft-baked. After demoulding, we obtain cylindrical pillars that are given a dome-like shape by a thermal softening. This structure is used as a master in a second PDMS replication step. An in-house developed sol-gel glass material with low organic content is then poured in the second PDMS replica and subsequently thermally treated to obtain an array of thick, dense and crack-free microlenses. We characterize the shrinkage and the surface roughness of the microlenses. Using imaging of millimeter-size objects in an optical microscope setup, we characterize basic optical properties of the lenses, like focal length, magnification, and distribution of the light intensity around the focal plane
ISSN:1057-7157
1941-0158
DOI:10.1109/JMEMS.2006.879696