Air-damped microresonators with enhanced quality factor
It is known that the dissipative damping force due to the air film trapped between the bottom of surface micromachined resonators and the substrate on which they are fabricated decreases in magnitude as the separation between the two increases. The practical outcome of this is that microresonators l...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2006-08, Vol.15 (4), p.822-831 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is known that the dissipative damping force due to the air film trapped between the bottom of surface micromachined resonators and the substrate on which they are fabricated decreases in magnitude as the separation between the two increases. The practical outcome of this is that microresonators located close to a substrate will have higher damping and a lower quality factor Q. In order to further investigate this effect and compare experimental findings with theory, a new test device that enables modulation of the damping interaction between a surface micromachined resonator and the substrate has been fabricated. The device consists of a surface micromachined polysilicon microresonator, which is self-elevated out of the plane of the substrate using a bimorph beam. A second, identical microresonator lying parallel to the plane of the substrate has also been fabricated. Both devices have been fabricated using the polysilicon multiuser microelectromechanical systems (MEMS) processes (polyMUMPs). The resonator-to-substrate separation of the elevated resonator is varied by changing the temperature of the bimorph beam, and the Q factors for different separations have been measured. Experimental results show that the elevated microresonators have Q values which are 65% higher than the in-plane microresonators. These experimental findings show good agreement with the theoretical model of damping used |
---|---|
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2006.879375 |