Analysis of Bandwidth Reduction and Resolution Improvement for Photonics-Assisted ADC
To keep pace with increasing data rates in the worldwide communication networks and the increased bandwidths requirements in measurement devices, sensors, radar, and many other applications, photonics-assisted analog-to-digital converters (PADCs) may be promising alternatives to circumvent the bandw...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2023-10, Vol.41 (19), p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 19 |
container_start_page | 1 |
container_title | Journal of lightwave technology |
container_volume | 41 |
creator | Mandalawi, Younus Meier, Janosch Singh, Karanveer Hosni, Mohamed I. De, Souvaraj Schneider, Thomas |
description | To keep pace with increasing data rates in the worldwide communication networks and the increased bandwidths requirements in measurement devices, sensors, radar, and many other applications, photonics-assisted analog-to-digital converters (PADCs) may be promising alternatives to circumvent the bandwidth bottleneck in pure electronic analog-to-digital converters (EADCs). Here we analyze optical sub-Nyquist orthogonal sampling with sinc-pulse sequences for the time-interleaving of high-bandwidth input signals into parallel low-bandwidth sub-signals (first sampling stage). These sub-signals are then detected and further processed with low-bandwidth electronic devices in parallel branches (second sampling stage). Orthogonal sampling with ideal devices is error-free. Additionally, in contrast to electronic sample and hold circuits, the first sampling stage is based on a multiplication and not a switching. Therefore, it adds no aperture jitter and the low jitter of today's oscillators can be directly transferred to the sampling of high-bandwidth signals. Compared to the direct detection, in simulations and a proof of concept experimental demonstration, we show around 8.5 dB signal-to-noise and distortion (SINAD) and 1.4 bit effective number of bits (ENOB) improvement for the detection of a 14.5 GHz signal with the proposed method in a three-branch system. With further simulations we analyze the possibilities and limits of the method and derive an equation for the resolution. In a nine-branch system with a jitter of 10 fs for the oscillator and 100 fs for the electronics, 100 GHz input signals can be processed with a resolution of 6 bit in 11 GHz electronics, for instance. The scheme is only based on a modulator and standard RF equipment. Therefore, integration into a single chip, together with the following electronic ADCs is straightforward. |
doi_str_mv | 10.1109/JLT.2023.3279876 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JLT_2023_3279876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10134559</ieee_id><sourcerecordid>2864339198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-c4b2f7c90c0d324e51d24dfc08bd6b378d45270287f5c7c668f43b987628ed133</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqVw58DBEucUe-3EzjGUV1ElEGrPVuKHmqqNS-yA-u9xKQdOq1nNrHY-hK4pmVBKyrvX-WICBNiEgSilKE7QiOa5zAAoO0UjIhjLpAB-ji5CWBNCOZdihJZVV2_2oQ3YO3xfd-a7NXGFP6wZdGx9h9MqqeA3w6-cbXe9_7Jb20XsfI_fVz76rtUhq0K6Eq3B1cP0Ep25ehPs1d8co-XT42L6ks3fnmfTap5pKCFmmjfghC6JJoYBtzk1wI3TRDamaJiQhucgCEjhci10UUjHWXNoB9IaytgY3R7vpqc-BxuiWvuhT42CAllwxkpayuQiR5fufQi9dWrXt9u63ytK1AGeSvDUAZ76g5ciN8dIa639Z6eM53nJfgAp5Wqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864339198</pqid></control><display><type>article</type><title>Analysis of Bandwidth Reduction and Resolution Improvement for Photonics-Assisted ADC</title><source>IEEE Electronic Library (IEL)</source><creator>Mandalawi, Younus ; Meier, Janosch ; Singh, Karanveer ; Hosni, Mohamed I. ; De, Souvaraj ; Schneider, Thomas</creator><creatorcontrib>Mandalawi, Younus ; Meier, Janosch ; Singh, Karanveer ; Hosni, Mohamed I. ; De, Souvaraj ; Schneider, Thomas</creatorcontrib><description>To keep pace with increasing data rates in the worldwide communication networks and the increased bandwidths requirements in measurement devices, sensors, radar, and many other applications, photonics-assisted analog-to-digital converters (PADCs) may be promising alternatives to circumvent the bandwidth bottleneck in pure electronic analog-to-digital converters (EADCs). Here we analyze optical sub-Nyquist orthogonal sampling with sinc-pulse sequences for the time-interleaving of high-bandwidth input signals into parallel low-bandwidth sub-signals (first sampling stage). These sub-signals are then detected and further processed with low-bandwidth electronic devices in parallel branches (second sampling stage). Orthogonal sampling with ideal devices is error-free. Additionally, in contrast to electronic sample and hold circuits, the first sampling stage is based on a multiplication and not a switching. Therefore, it adds no aperture jitter and the low jitter of today's oscillators can be directly transferred to the sampling of high-bandwidth signals. Compared to the direct detection, in simulations and a proof of concept experimental demonstration, we show around 8.5 dB signal-to-noise and distortion (SINAD) and 1.4 bit effective number of bits (ENOB) improvement for the detection of a 14.5 GHz signal with the proposed method in a three-branch system. With further simulations we analyze the possibilities and limits of the method and derive an equation for the resolution. In a nine-branch system with a jitter of 10 fs for the oscillator and 100 fs for the electronics, 100 GHz input signals can be processed with a resolution of 6 bit in 11 GHz electronics, for instance. The scheme is only based on a modulator and standard RF equipment. Therefore, integration into a single chip, together with the following electronic ADCs is straightforward.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2023.3279876</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog to digital converters ; Bandwidth ; Bandwidths ; Communication networks ; Effective number of bits ; Electronics ; Frequency modulation ; Jitter ; Measuring instruments ; Modulation ; Noise levels ; optical frequency comb ; Optical modulation ; Optical pulses ; Optical sampling ; Oscillators ; Photonics ; Photonics-assisted analog-digital conversion ; Radio frequency ; Sampling ; Timing jitter ; Vibration</subject><ispartof>Journal of lightwave technology, 2023-10, Vol.41 (19), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-c4b2f7c90c0d324e51d24dfc08bd6b378d45270287f5c7c668f43b987628ed133</citedby><cites>FETCH-LOGICAL-c292t-c4b2f7c90c0d324e51d24dfc08bd6b378d45270287f5c7c668f43b987628ed133</cites><orcidid>0000-0001-6853-7128 ; 0000-0001-7308-5867 ; 0000-0002-0438-6276 ; 0000-0002-2164-4708 ; 0000-0002-6583-0377 ; 0000-0003-4686-2688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10134559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10134559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mandalawi, Younus</creatorcontrib><creatorcontrib>Meier, Janosch</creatorcontrib><creatorcontrib>Singh, Karanveer</creatorcontrib><creatorcontrib>Hosni, Mohamed I.</creatorcontrib><creatorcontrib>De, Souvaraj</creatorcontrib><creatorcontrib>Schneider, Thomas</creatorcontrib><title>Analysis of Bandwidth Reduction and Resolution Improvement for Photonics-Assisted ADC</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>To keep pace with increasing data rates in the worldwide communication networks and the increased bandwidths requirements in measurement devices, sensors, radar, and many other applications, photonics-assisted analog-to-digital converters (PADCs) may be promising alternatives to circumvent the bandwidth bottleneck in pure electronic analog-to-digital converters (EADCs). Here we analyze optical sub-Nyquist orthogonal sampling with sinc-pulse sequences for the time-interleaving of high-bandwidth input signals into parallel low-bandwidth sub-signals (first sampling stage). These sub-signals are then detected and further processed with low-bandwidth electronic devices in parallel branches (second sampling stage). Orthogonal sampling with ideal devices is error-free. Additionally, in contrast to electronic sample and hold circuits, the first sampling stage is based on a multiplication and not a switching. Therefore, it adds no aperture jitter and the low jitter of today's oscillators can be directly transferred to the sampling of high-bandwidth signals. Compared to the direct detection, in simulations and a proof of concept experimental demonstration, we show around 8.5 dB signal-to-noise and distortion (SINAD) and 1.4 bit effective number of bits (ENOB) improvement for the detection of a 14.5 GHz signal with the proposed method in a three-branch system. With further simulations we analyze the possibilities and limits of the method and derive an equation for the resolution. In a nine-branch system with a jitter of 10 fs for the oscillator and 100 fs for the electronics, 100 GHz input signals can be processed with a resolution of 6 bit in 11 GHz electronics, for instance. The scheme is only based on a modulator and standard RF equipment. Therefore, integration into a single chip, together with the following electronic ADCs is straightforward.</description><subject>Analog to digital converters</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Communication networks</subject><subject>Effective number of bits</subject><subject>Electronics</subject><subject>Frequency modulation</subject><subject>Jitter</subject><subject>Measuring instruments</subject><subject>Modulation</subject><subject>Noise levels</subject><subject>optical frequency comb</subject><subject>Optical modulation</subject><subject>Optical pulses</subject><subject>Optical sampling</subject><subject>Oscillators</subject><subject>Photonics</subject><subject>Photonics-assisted analog-digital conversion</subject><subject>Radio frequency</subject><subject>Sampling</subject><subject>Timing jitter</subject><subject>Vibration</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqVw58DBEucUe-3EzjGUV1ElEGrPVuKHmqqNS-yA-u9xKQdOq1nNrHY-hK4pmVBKyrvX-WICBNiEgSilKE7QiOa5zAAoO0UjIhjLpAB-ji5CWBNCOZdihJZVV2_2oQ3YO3xfd-a7NXGFP6wZdGx9h9MqqeA3w6-cbXe9_7Jb20XsfI_fVz76rtUhq0K6Eq3B1cP0Ep25ehPs1d8co-XT42L6ks3fnmfTap5pKCFmmjfghC6JJoYBtzk1wI3TRDamaJiQhucgCEjhci10UUjHWXNoB9IaytgY3R7vpqc-BxuiWvuhT42CAllwxkpayuQiR5fufQi9dWrXt9u63ytK1AGeSvDUAZ76g5ciN8dIa639Z6eM53nJfgAp5Wqw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Mandalawi, Younus</creator><creator>Meier, Janosch</creator><creator>Singh, Karanveer</creator><creator>Hosni, Mohamed I.</creator><creator>De, Souvaraj</creator><creator>Schneider, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6853-7128</orcidid><orcidid>https://orcid.org/0000-0001-7308-5867</orcidid><orcidid>https://orcid.org/0000-0002-0438-6276</orcidid><orcidid>https://orcid.org/0000-0002-2164-4708</orcidid><orcidid>https://orcid.org/0000-0002-6583-0377</orcidid><orcidid>https://orcid.org/0000-0003-4686-2688</orcidid></search><sort><creationdate>20231001</creationdate><title>Analysis of Bandwidth Reduction and Resolution Improvement for Photonics-Assisted ADC</title><author>Mandalawi, Younus ; Meier, Janosch ; Singh, Karanveer ; Hosni, Mohamed I. ; De, Souvaraj ; Schneider, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-c4b2f7c90c0d324e51d24dfc08bd6b378d45270287f5c7c668f43b987628ed133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analog to digital converters</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Communication networks</topic><topic>Effective number of bits</topic><topic>Electronics</topic><topic>Frequency modulation</topic><topic>Jitter</topic><topic>Measuring instruments</topic><topic>Modulation</topic><topic>Noise levels</topic><topic>optical frequency comb</topic><topic>Optical modulation</topic><topic>Optical pulses</topic><topic>Optical sampling</topic><topic>Oscillators</topic><topic>Photonics</topic><topic>Photonics-assisted analog-digital conversion</topic><topic>Radio frequency</topic><topic>Sampling</topic><topic>Timing jitter</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandalawi, Younus</creatorcontrib><creatorcontrib>Meier, Janosch</creatorcontrib><creatorcontrib>Singh, Karanveer</creatorcontrib><creatorcontrib>Hosni, Mohamed I.</creatorcontrib><creatorcontrib>De, Souvaraj</creatorcontrib><creatorcontrib>Schneider, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mandalawi, Younus</au><au>Meier, Janosch</au><au>Singh, Karanveer</au><au>Hosni, Mohamed I.</au><au>De, Souvaraj</au><au>Schneider, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Bandwidth Reduction and Resolution Improvement for Photonics-Assisted ADC</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>41</volume><issue>19</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>To keep pace with increasing data rates in the worldwide communication networks and the increased bandwidths requirements in measurement devices, sensors, radar, and many other applications, photonics-assisted analog-to-digital converters (PADCs) may be promising alternatives to circumvent the bandwidth bottleneck in pure electronic analog-to-digital converters (EADCs). Here we analyze optical sub-Nyquist orthogonal sampling with sinc-pulse sequences for the time-interleaving of high-bandwidth input signals into parallel low-bandwidth sub-signals (first sampling stage). These sub-signals are then detected and further processed with low-bandwidth electronic devices in parallel branches (second sampling stage). Orthogonal sampling with ideal devices is error-free. Additionally, in contrast to electronic sample and hold circuits, the first sampling stage is based on a multiplication and not a switching. Therefore, it adds no aperture jitter and the low jitter of today's oscillators can be directly transferred to the sampling of high-bandwidth signals. Compared to the direct detection, in simulations and a proof of concept experimental demonstration, we show around 8.5 dB signal-to-noise and distortion (SINAD) and 1.4 bit effective number of bits (ENOB) improvement for the detection of a 14.5 GHz signal with the proposed method in a three-branch system. With further simulations we analyze the possibilities and limits of the method and derive an equation for the resolution. In a nine-branch system with a jitter of 10 fs for the oscillator and 100 fs for the electronics, 100 GHz input signals can be processed with a resolution of 6 bit in 11 GHz electronics, for instance. The scheme is only based on a modulator and standard RF equipment. Therefore, integration into a single chip, together with the following electronic ADCs is straightforward.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2023.3279876</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6853-7128</orcidid><orcidid>https://orcid.org/0000-0001-7308-5867</orcidid><orcidid>https://orcid.org/0000-0002-0438-6276</orcidid><orcidid>https://orcid.org/0000-0002-2164-4708</orcidid><orcidid>https://orcid.org/0000-0002-6583-0377</orcidid><orcidid>https://orcid.org/0000-0003-4686-2688</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2023-10, Vol.41 (19), p.1-10 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JLT_2023_3279876 |
source | IEEE Electronic Library (IEL) |
subjects | Analog to digital converters Bandwidth Bandwidths Communication networks Effective number of bits Electronics Frequency modulation Jitter Measuring instruments Modulation Noise levels optical frequency comb Optical modulation Optical pulses Optical sampling Oscillators Photonics Photonics-assisted analog-digital conversion Radio frequency Sampling Timing jitter Vibration |
title | Analysis of Bandwidth Reduction and Resolution Improvement for Photonics-Assisted ADC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Bandwidth%20Reduction%20and%20Resolution%20Improvement%20for%20Photonics-Assisted%20ADC&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Mandalawi,%20Younus&rft.date=2023-10-01&rft.volume=41&rft.issue=19&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2023.3279876&rft_dat=%3Cproquest_RIE%3E2864339198%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864339198&rft_id=info:pmid/&rft_ieee_id=10134559&rfr_iscdi=true |