Low-Loss, Low-Crosstalk, and Large-Scale Optical Switch Based on Silicon Photonics
We review the research progress of strictly nonblocking optical switches based on silicon photonics. We have developed a switch chip fabrication process based on a complementary metal-oxide-semiconductor pilot line and optical and electrical packaging technologies. We demonstrated all-paths transmis...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2020-01, Vol.38 (2), p.233-239 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We review the research progress of strictly nonblocking optical switches based on silicon photonics. We have developed a switch chip fabrication process based on a complementary metal-oxide-semiconductor pilot line and optical and electrical packaging technologies. We demonstrated all-paths transmission and switching of up to 32 input ports × 32 output ports with an average fiber-to-fiber insertion loss of 10.8 dB. Furthermore, we demonstrated an operating bandwidth wider than 100 nm for -30 dB crosstalk with double-Mach-Zehnder element switches in an 8 × 8 switch. For polarization-insensitive operation, we adopted a polarization diversity scheme and fabricated an 8 × 8 switch with fiber-based polarization-beam-splitters and two switch chips. The 8 × 8 switch exhibited a polarization-dependent loss of less than 0.5 dB. Moreover, an on-chip polarization diversity 8 × 8 switch integrated with polarization splitter rotators and two switch matrices on a single chip demonstrated a differential group delay less than 1 ps. Based on current technologies, we discuss the prospects for further port count expansion and remaining challenges for commercial deployment. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2019.2934768 |