On the Theory of Coupled Modes in Optical Cavity-Waveguide Structures

Light propagation in systems of optical cavities coupled to waveguides can be conveniently described by a general rate equation model known as (temporal) coupled mode theory (CMT). We present an alternative derivation of the CMT for optical cavity-waveguide structures, which explicitly relies on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2017-10, Vol.35 (19), p.4247-4259
Hauptverfasser: Kristensen, Philip Trost, de Lasson, Jakob Rosenkrantz, Heuck, Mikkel, Gregersen, Niels, Mork, Jesper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Light propagation in systems of optical cavities coupled to waveguides can be conveniently described by a general rate equation model known as (temporal) coupled mode theory (CMT). We present an alternative derivation of the CMT for optical cavity-waveguide structures, which explicitly relies on the treatment of the cavity modes as quasi-normal modes with properties that are distinctly different from those of the modes in the waveguides. The two families of modes are coupled via the field equivalence principle to provide a physically appealing yet surprisingly accurate description of light propagation in the coupled systems. Practical application of the theory is illustrated using example calculations in one and two dimensions.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2017.2714263