Analysis of Straight Periodic Segmented Waveguide Using the 2-D Finite Element Method
A numerical analysis of periodic segmented waveguides (PSWs) using the 2-D finite element method (2D-FEM) in the frequency domain is presented. This method has significantly lower computational cost when compared with 3-D methods that have been used to model PSWs, and can also model back reflected s...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2014-06, Vol.32 (11), p.2163-2169 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A numerical analysis of periodic segmented waveguides (PSWs) using the 2-D finite element method (2D-FEM) in the frequency domain is presented. This method has significantly lower computational cost when compared with 3-D methods that have been used to model PSWs, and can also model back reflected signals. Unlike photonic crystal waveguides, light confinement in a PSW is due to total internal reflection as in a continuous waveguide (CWG). We show that the dispersion relation of the guided modes in PSW is strongly influenced by the dielectric periodicity along the waveguide. We calculate the mode profile of a PSW in a region far away from the bandgap and we showed that it is comparable to the mode profile of the equivalent CWG even for relatively high values of averaged refractive index contrast. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2014.2321047 |