High Performance MEMS-Based Micro-Optic Assembly for Multi-Lane Transceivers

Advanced transceivers generally require a multi-lane approach, which necessitates the integration of multiple subcomponents. The use of mature, generally available, and low-cost single element components such as electro-absorption modulated lasers, silica planar lightwave circuits, and direct-modula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2014-08, Vol.32 (16), p.2796-2799
Hauptverfasser: Pezeshki, Bardia, Heanue, John, Ton, Dinh, Schrans, Thomas, Rangarajan, Suresh, Zou, Sarah, Yoffe, Gideon W., Liu, Alice, Sherback, Michael, Kubicky, Jay, Ludwig, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced transceivers generally require a multi-lane approach, which necessitates the integration of multiple subcomponents. The use of mature, generally available, and low-cost single element components such as electro-absorption modulated lasers, silica planar lightwave circuits, and direct-modulated distributed feedback lasers, integrated in a hybrid fashion and optically aligned with micro-electromechanical systems provides a practical solution. Standard bonding tools with positioning tolerances of approximately ten micrometers are used to populate a silicon microbench that incorporates micro-adjustable elements with various optical components. After diebonding, the positions of coupling microlenses are adjusted to correct for the poor diebond accuracy, and then these movable elements are fixed in place with built-in heaters and solder. The net result is highly uniform, manufacturable, and low loss coupling between the optical elements, with typically 1 to 2 dB of loss. Using this packaging technique, we demonstrate a 40 Gb/s four-channel (4 × 10 Gb/s) DML-based transceiver and a 100 Gb/s ten-channel (10 × 10 Gb/s) EML-based transceiver for 10 and 80 km reach respectively.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2014.2307489