Optical packet switching and buffering by using all-optical signal processing methods
We present a 1 /spl times/ 2 all-optical packet switch. All the processing of the header information is carried out in the optical domain. The optical headers are recognized by employing the two-pulse correlation principle in a semiconductor laser amplifier in loop optical mirror (SLALOM) configurat...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2003-01, Vol.21 (1), p.2-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a 1 /spl times/ 2 all-optical packet switch. All the processing of the header information is carried out in the optical domain. The optical headers are recognized by employing the two-pulse correlation principle in a semiconductor laser amplifier in loop optical mirror (SLALOM) configuration. The processed header information is stored in an optical flip-flop memory that is based on a symmetric configuration of two coupled lasers. The optical flip-flop memory drives a wavelength routing switch that is based on cross-gain modulation in a semiconductor optical amplifier. We also present an alternative optical packet routing concept that can be used for all-optical buffering of data packets. In this case, an optical threshold function that is based on a asymmetric configuration of two coupled lasers is used to drive a wavelength routing switch. Experimental results are presented for both the 1 /spl times/ 2 optical packet switch and the optical buffer switch. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2002.803062 |