An Experimental Evaluation Based on Direction Finding Specification for Indoor Localization and Proximity Detection

Radio-frequency technologies have been largely explored to deliver reliable indoor localization systems. However, at the current stage, none of the proposed technologies represent a de-facto standard. Although RSS-based (received signal strength) techniques have been extensively studied, they suffer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of indoor and seamless positioning and navigation. 2024, Vol.2, p.36-50
Hauptverfasser: Girolami, Michele, Mavilia, Fabio, Furfari, Francesco, Barsocchi, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radio-frequency technologies have been largely explored to deliver reliable indoor localization systems. However, at the current stage, none of the proposed technologies represent a de-facto standard. Although RSS-based (received signal strength) techniques have been extensively studied, they suffer of a number of side-effects mainly caused by the complexity of radio propagation in indoor environments. A possible solution is designing systems exploiting multiple techniques, so that to compensate weaknesses of a specific source of information. Under this respect, Bluetooth represents an interesting technology, combining multiple techniques for indoor localization. In particular, the BT5.1 direction finding specification includes the possibility of estimating the angle between an emitting device and an antenna array. The Angle of Arrival (AoA) provides interesting features for the localization purpose, as it allows estimating the direction from which a signal is propagated. In this work, we detail our experimental setting based on a BT5.1-compliant kit to quantitatively measure the performance in three scenarios: static positioning, mobility, and proximity detection. Scenarios provide a robust benchmark allowing us to identify and discuss features of AoA values also in comparison with respect to traditional RSS-based approaches.
ISSN:2832-7322
2832-7322
DOI:10.1109/JISPIN.2023.3345268