Comprehensive Throughput Analysis of Unslotted ALOHA for Low-Power Wide-Area Networks

Unslotted ALOHA has been often employed by several low-power wide-area networks (LPWANs) for Internet of Things (IoT) as a random access (RA) protocol. This work analyzes the performance of unslotted ALOHA systems in terms of throughput and RA delay, and investigates their optimization. Our analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2022-09, Vol.9 (17), p.15800-15813
Hauptverfasser: Seo, Jun-Bae, Hu, Yangqian, Pack, Sangheon, Jin, Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unslotted ALOHA has been often employed by several low-power wide-area networks (LPWANs) for Internet of Things (IoT) as a random access (RA) protocol. This work analyzes the performance of unslotted ALOHA systems in terms of throughput and RA delay, and investigates their optimization. Our analysis consists of: 1) two- heterogeneous user case, whose backoff rate and packet length are different; 2) N - homogeneous user case, whose backoff rate and packet length are identical; and 3) homogeneous users of infinite population model. In the two-user case, we investigate the throughput region of unslotted ALOHA by using a multiobjective optimization problem (MOOP) and derive the Laplace Stieltjes transform (LST) of the probability density function (PDF) of RA delay. For N -homogeneous user case, we show how the throughput behaves according to the population size, packet length, and backoff rate. Our work may provide a comprehensive analytical framework for unslotted ALOHA systems.
ISSN:2327-4662
2327-4662
DOI:10.1109/JIOT.2022.3150168