Next-Generation RF Front-End Design Methods for Direct \Delta\Sigma Receivers

RF-to-digital conversion is a recent approach to digital-intensive wireless receiver operation. Such converters often employ delta-sigma (ΔΣ) modulation to transcend the traditional divide between receiver RF front-ends and baseband analog-to-digital converters (ADC). Research on the direct delta-si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on emerging and selected topics in circuits and systems 2015-12, Vol.5 (4), p.514-524
Hauptverfasser: Ostman, Kim B., Englund, Mikko, Viitala, Olli, Stadius, Kari, Koli, Kimmo, Ryynanen, Jussi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RF-to-digital conversion is a recent approach to digital-intensive wireless receiver operation. Such converters often employ delta-sigma (ΔΣ) modulation to transcend the traditional divide between receiver RF front-ends and baseband analog-to-digital converters (ADC). Research on the direct delta-sigma receiver (DDSR) architecture is one example of the emergence of next-generation ΔΣ modulators. It embeds a direct conversion receiver front-end as part of a feedback-type ΔΣ modulator structure with an active loop filter, which extends ADC operation to RF and changes the role of the low-noise amplifier (LNA) and mixing stages. RF-to-digital converters thus merge the two formerly separate design domains, requiring a paradigm shift in both RF and ADC design methods. Accordingly, this paper uses the DDSR as an example to bridge the gap between RF and ADC design, by providing a systematic understanding of the role, modeling, and design strategy of the related complete RF front-end. Most importantly, the analysis produces new design equations that link analog RF stage properties to their continuous-time (CT) ΔΣ modulator coefficients, thus providing a useful circuit design tool.
ISSN:2156-3357
2156-3365
DOI:10.1109/JETCAS.2015.2502165