Design and Experimental Validation of a Wire-Bond-Less 10-kV SiC MOSFET Power Module

Wide bandgap (WBG) power devices with voltage ratings exceeding 10 kV have the potential to revolutionize medium- and high-voltage systems due to their high-speed switching and lower ON-state losses. However, the present power module packages are limiting the performance of these unique switches. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in power electronics 2020-03, Vol.8 (1), p.381-394
Hauptverfasser: DiMarino, Christina, Mouawad, Bassem, Johnson, C. Mark, Wang, Meiyu, Tan, Yan-Song, Lu, Guo-Quan, Boroyevich, Dushan, Burgos, Rolando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wide bandgap (WBG) power devices with voltage ratings exceeding 10 kV have the potential to revolutionize medium- and high-voltage systems due to their high-speed switching and lower ON-state losses. However, the present power module packages are limiting the performance of these unique switches. The objective of this article is to push the boundaries of high-density, high-speed, 10-kV power module packaging. The proposed package addresses the well-known electromagnetic and thermal challenges, as well as the more recent and prominent electrostatic and electromagnetic interference (EMI) issues associated with high-speed, 10-kV devices. The module achieves low and balanced parasitic inductances, resulting in a record switching speed of 250 V/ns with negligible ringing and voltage overshoot. An integrated screen reduces the common-mode (CM) current that is generated by these fast voltage transients by ten times. This screen connection simultaneously increases the partial discharge inception voltage (PDIV) by more than 50%. A compact, medium-voltage termination and system interface design is also proposed in this article. With the integrated jet-impingement cooler, the power module prototype achieves a power density of 4 W/mm 3 . This article presents the design, prototyping, and testing of this optimized package for 10-kV SiC MOSFETs.
ISSN:2168-6777
2168-6785
DOI:10.1109/JESTPE.2019.2944138