A High-Efficiency High-Density Wide-Bandgap Device-Based Bidirectional On-Board Charger
This paper proposes a novel two-stage topology for a 6.6-kW on-board charger. The first stage, employing an interleaved bridgeless totem-pole ac/dc in critical conduction mode to realize zero-voltage switching, is operated at over 300 kHz. A bidirectional CLLC resonant converter operating at 500 kHz...
Gespeichert in:
Veröffentlicht in: | IEEE journal of emerging and selected topics in power electronics 2018-09, Vol.6 (3), p.1627-1636 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a novel two-stage topology for a 6.6-kW on-board charger. The first stage, employing an interleaved bridgeless totem-pole ac/dc in critical conduction mode to realize zero-voltage switching, is operated at over 300 kHz. A bidirectional CLLC resonant converter operating at 500 kHz is chosen for the second stage. A variable dc-link voltage is adopted to track the wide battery voltage range, so that the CLLC resonant converter can always operate at its most efficient point. The 1.2-kV SiC devices are adopted for the ac/dc stage and the primary side of dc/dc stage, while 650-V GaN devices are used for the secondary side of dc/dc stage. In addition, PCB winding coupled inductors and integrated transformer are implemented in ac/dc stage and dc/dc stage, respectively, for the purpose of high density and manufacture automation. The proposed structure is demonstrated to have 37-W/in 3 power density and above 96% efficiency over the entire battery voltage range, which far exceeds the current practice. |
---|---|
ISSN: | 2168-6777 2168-6785 |
DOI: | 10.1109/JESTPE.2018.2845846 |