EEG Characteristic Comparison of Motor Imagery Between Supernumerary and Inherent Limb: Sixth-Finger MI Enhances the ERD Pattern and Classification Performance

Adding supernumerary robotic limbs (SRLs) to humans and controlling them directly through the brain are main goals for movement augmentation. However, it remains uncertain whether neural patterns different from the traditional inherent limbs motor imagery (MI) can be extracted, which is essential fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-12, Vol.28 (12), p.7078-7089
Hauptverfasser: Wang, Zhuang, Liu, Yuan, Huang, Shuaifei, Qiu, Shiyin, Zhang, Yujian, Huang, Huimin, An, Xingwei, Ming, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adding supernumerary robotic limbs (SRLs) to humans and controlling them directly through the brain are main goals for movement augmentation. However, it remains uncertain whether neural patterns different from the traditional inherent limbs motor imagery (MI) can be extracted, which is essential for high-dimensional control of external devices. In this work, we established a MI neo-framework consisting of novel supernumerary robotic sixth-finger MI (SRF-MI) and traditional right-hand MI (RH-MI) paradigms and validated the distinctness of EEG response patterns between two MI tasks for the first time. Twenty-four subjects were recruited for this experiment involving three mental tasks. Event-related spectral perturbation was adopted to supply details about event-related desynchronization (ERD). Activation region, intensity and response time (RT) of ERD were compared between SRF-MI and RH-MI tasks. Three classical classification algorithms were utilized to verify the separability between different mental tasks. And genetic algorithm aims to select optimal combination of channels for neo-framework. A bilateral sensorimotor and prefrontal modulation was found during the SRF-MI task, whereas in RH-MI only contralateral sensorimotor modulation was exhibited. The novel SRF-MI paradigm enhanced ERD intensity by a maximum of 117% in prefrontal area and 188% in the ipsilateral somatosensory-association cortex. And, a global decrease of RT was exhibited during SRF-MI tasks compared to RH-MI. Classification results indicate well separable performance among different mental tasks (88.1% maximum for 2-class and 88.2% maximum for 3-class). This work demonstrated the difference between the SRF-MI and RH-MI paradigms, widening the control bandwidth of the BCI system.
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2024.3452701