NLRRC: a novel clustering method of jointing non-negative LRR and random walk graph regularized NMF for single-cell type identification

The development of single-cell RNA sequencing (scRNA-seq) technology has opened up a new perspective for us to study disease mechanisms at the single cell level. Cell clustering reveals the natural grouping of cells, which is a vital step in scRNA-seq data analysis. However, the high noise and dropo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2023-10, Vol.PP (10), p.1-11
Hauptverfasser: Wang, Juan, Wang, Lin-Ping, Yuan, Sha-sha, Li, Feng, Liu, Jin-Xing, Shang, Jun-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of single-cell RNA sequencing (scRNA-seq) technology has opened up a new perspective for us to study disease mechanisms at the single cell level. Cell clustering reveals the natural grouping of cells, which is a vital step in scRNA-seq data analysis. However, the high noise and dropout of single-cell data pose numerous challenges to cell clustering. In this study, we propose a novel matrix factorization method named NLRRC for single-cell type identification. NLRRC joins non-negative low-rank representation (LRR) and random walk graph regularized NMF (RWNMFC) to accurately reveal the natural grouping of cells. Specifically, we find the lowest rank representation of single-cell samples by non-negative LRR to reduce the difficulty of analyzing high-dimensional samples and capture the global information of the samples. Meanwhile, by using random walk graph regularization (RWGR) and NMF, RWNMFC captures manifold structure and cluster information before generating a cluster allocation matrix. The cluster assignment matrix contains cluster labels, which can be used directly to get the clustering results. The performance of NLRRC is validated on simulated and real single-cell datasets. The results of the experiments illustrate that NLRRC has a significant advantage in single-cell type identification. The implementation and source code for the NLRRC method are available at https://github.com/Marie888666/NLRRC .
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2023.3299748