LHAR: Lightweight Human Activity Recognition on Knowledge Distillation

Sensor-based Human Activity Recognition (HAR) is widely used in daily life and is the basic-level bridge to virtual healthcare in the metaverse. The current challenge is the low recognition accuracy for personalized users on smart wearable devices. The limited resource cannot support large deep lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-11, Vol.28 (11), p.6318-6328
Hauptverfasser: Deng, Shizhuo, Chen, Jiaqi, Teng, Da, Yang, Chuangui, Chen, Dongyue, Jia, Tong, Wang, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sensor-based Human Activity Recognition (HAR) is widely used in daily life and is the basic-level bridge to virtual healthcare in the metaverse. The current challenge is the low recognition accuracy for personalized users on smart wearable devices. The limited resource cannot support large deep learning models updated locally. Besides, integrating and transmitting sensor data to the cloud would reduce the efficiency. Considering the tradeoff between performance and complexity, we propose a Lightweight Human Activity Recognition (LHAR) framework. In LHAR, we combine the cross-people HAR task with the lightweight model task. LHAR framework is designed on the teacher-student architecture and the student network consists of multiple depthwise separable convolution layers to achieve fewer parameters. The dark knowledge distilled from the complex teacher model enhances the generalization ability of LHAR. To achieve effective knowledge distillation, we propose two optimization methods. Firstly, we train the teacher model by ensemble learning to promote teacher performance. Secondly, a multi-channel data augmentation method is proposed for the diversity of the dataset, which is a plug-in operation for the ensemble teacher model. In the experiments, we compare LHAR with state-of-art models in comparison evaluation, ablation study and the hyperparameter analysis, which proves the better performance of LHAR in efficiency and effectiveness.
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2023.3298932