DeepRecS: From RECIST Diameters to Precise Liver Tumor Segmentation

Liver tumor segmentation (LiTS) is of primary importance in diagnosis and treatment of hepatocellular carcinoma. Known automated LiTS methods could not yield satisfactory results for clinical use since they were hard to model flexible tumor shapes and locations. In clinical practice, radiologists us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-02, Vol.26 (2), p.614-625
Hauptverfasser: Zhang, Yue, Peng, Chengtao, Peng, Liying, Xu, Yingying, Lin, Lanfen, Tong, Ruofeng, Peng, Zhiyi, Mao, Xiongwei, Hu, Hongjie, Chen, Yen-Wei, Li, Jingsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liver tumor segmentation (LiTS) is of primary importance in diagnosis and treatment of hepatocellular carcinoma. Known automated LiTS methods could not yield satisfactory results for clinical use since they were hard to model flexible tumor shapes and locations. In clinical practice, radiologists usually estimate tumor shape and size by a Response Evaluation Criteria in Solid Tumor (RECIST) mark. Inspired by this, in this paper, we explore a deep learning (DL) based interactive LiTS method, which incorporates guidance from user-provided RECIST marks. Our method takes a three-step framework to predict liver tumor boundaries. Under this architecture, we develop a RECIST mark propagation network (RMP-Net) to estimate RECIST-like marks in off-RECIST slices. We also devise a context-guided boundary-sensitive network (CGBS-Net) to distill tumors' contextual and boundary information from corresponding RECIST(-like) marks, and then predict tumor maps. To further refine the segmentation results, we process the tumor maps using a 3D conditional random field (CRF) algorithm and a morphology hole-filling operation. Verified on two clinical contrast-enhanced abdomen computed tomography (CT) image datasets, our proposed approach can produce promising segmentation results, and outperforms the state-of-the-art interactive segmentation methods.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2021.3091900