Full-State-Constrained Non-Certainty-Equivalent Adaptive Control for Satellite Swarm Subject to Input Fault
Satellite swarm coordinated flight (SSCF) technology has promising applications, but its complex nature poses significant challenges for control implementation. In response, this paper proposes an easily solvable adaptive control scheme to achieve high-performance trajectory tracking of the SSCF sys...
Gespeichert in:
Veröffentlicht in: | IEEE/CAA journal of automatica sinica 2022-03, Vol.9 (3), p.482-495 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Satellite swarm coordinated flight (SSCF) technology has promising applications, but its complex nature poses significant challenges for control implementation. In response, this paper proposes an easily solvable adaptive control scheme to achieve high-performance trajectory tracking of the SSCF system subject to actuator efficiency losses and external disturbances. Most existing adaptive controllers based on the certainty-equivalent (CE) principle show unpredictability and non-convergence in their online parameter estimations. To overcome the above vulnerabilities and the difficulties caused by input failures of SSCF, this paper proposes an adaptive estimator based on scaling immersion and invariance (I&I), which reduces the computational complexity while improving the performance of the parameter estimator. Besides, a barrier Lyapunov function (BLF) is applied to satisfy both the boundedness of the system states and the singularity avoidance of the computation. It is proved that the estimator error becomes sufficiently small to converge to a specified attractive invariant manifold and the closed-loop SSCF system can obtain asymptotic stability under full-state constraints. Finally, numerical simulations are performed for comparison and analysis to verify the effectiveness and superiority of the proposed method. |
---|---|
ISSN: | 2329-9266 2329-9274 |
DOI: | 10.1109/JAS.2021.1004216 |