Parameters Tuning of Model Free Adaptive Control Based on Minimum Entropy

Dynamic linearization based model free adaptive control(MFAC) algorithm has been widely used in practical systems, in which some parameters should be tuned before it is successfully applied to process industries. Considering the random noise existing in real processes, a parameter tuning method base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2014-10, Vol.1 (4), p.361-371
Hauptverfasser: Ji, Chao, Wang, Jing, Cao, Liulin, Jin, Qibing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic linearization based model free adaptive control(MFAC) algorithm has been widely used in practical systems, in which some parameters should be tuned before it is successfully applied to process industries. Considering the random noise existing in real processes, a parameter tuning method based on minimum entropy optimization is proposed,and the feature of entropy is used to accurately describe the system uncertainty. For cases of Gaussian stochastic noise and non-Gaussian stochastic noise, an entropy recursive optimization algorithm is derived based on approximate model or identified model. The extensive simulation results show the effectiveness of the minimum entropy optimization for the partial form dynamic linearization based MFAC. The parameters tuned by the minimum entropy optimization index shows stronger stability and more robustness than these tuned by other traditional index,such as integral of the squared error(ISE) or integral of timeweighted absolute error(ITAE), when the system stochastic noise exists.
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2014.7004664