Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)
The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Maroof, Ayesha Ayvaz, Berk Naeem, Khawar |
description | The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for a fleet of vehicles. This research introduces a cutting-edge Hybrid Genetic Algorithm-Solomon Insertion Heuristic (HGA-SIH) solution, reinforced by the powerful Solomon Insertion constructive heuristic to solve the VRPTW as an NP-hard problem. The performance of the proposed HGA-SIH is validated against Solomon's VRPTW benchmark instances. The results showcase the outstanding performance of HGA, achieving Best-Known Solutions (BKS) for 11 instances and enhancing BKS solutions in one instance. Experimental findings validate that HGA-SIH consistently delivers results on par with or surpasses those obtained by several cutting-edge algorithms when evaluated based on various solution quality metrics. HGA-SIH consistently excels in efficiently managing the number of vehicles while minimizing travel distances, resulting in slight deviations from BKS that remain within practical limits. The research highlights the adaptability and efficacy of HGA-SIH in addressing a wide range of VRPTW scenarios, thereby making substantial contributions to logistics and supply chain optimization. |
doi_str_mv | 10.1109/ACCESS.2024.3373699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3373699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10459172</ieee_id><doaj_id>oai_doaj_org_article_76523e9235cf4070a6a5fdef7188ad5d</doaj_id><sourcerecordid>2956886762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-534cc4148981ce96c2a31aa66ea2a6801f0199da54bfe700086d3fd6997d57453</originalsourceid><addsrcrecordid>eNpNUUtPGzEYXKFWAlF-QXuwxAUOSf32mtsqoglSJBBZ4Gg5tjdxtLtO7Y0QPfWn12FRhS_-NJqZ7zFF8R3BKUJQ_qxms9vVaoohplNCBOFSnhRnGHE5IYzwL5_q0-IipR3Mr8wQE2fF32XY-DR4k8D9fvCd_6MHH3rwlHy_AYu3dfQWzF3vMgVU7SZEP2w7cLWYV9c3oAKr0B7eBXUA9daBZ7f1pnXgMWQ4OzzEsG5dB16yDNS-c7nqbXhN4Or58aF-uf5WfG10m9zFx39ePP26rWeLyfJ-fjerlhNDoRwmjFBjKKKlLJFxkhusCdKac6ex5iVEDURSWs3ounHiuCC3pLH5FsIyQRk5L-5GXxv0Tu2j73R8U0F79Q6EuFE6DsfZleAMEycxYaahUEDNNWusawQqS22ZzV6Xo9c-ht8Hlwa1C4fY5_EVloyXJRccZxYZWSaGlKJr_ndFUB2TU2Ny6pic-kguq36MKu-c-6SgTCKByT8x_ZMK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956886762</pqid></control><display><type>article</type><title>Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Maroof, Ayesha ; Ayvaz, Berk ; Naeem, Khawar</creator><creatorcontrib>Maroof, Ayesha ; Ayvaz, Berk ; Naeem, Khawar</creatorcontrib><description>The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for a fleet of vehicles. This research introduces a cutting-edge Hybrid Genetic Algorithm-Solomon Insertion Heuristic (HGA-SIH) solution, reinforced by the powerful Solomon Insertion constructive heuristic to solve the VRPTW as an NP-hard problem. The performance of the proposed HGA-SIH is validated against Solomon's VRPTW benchmark instances. The results showcase the outstanding performance of HGA, achieving Best-Known Solutions (BKS) for 11 instances and enhancing BKS solutions in one instance. Experimental findings validate that HGA-SIH consistently delivers results on par with or surpasses those obtained by several cutting-edge algorithms when evaluated based on various solution quality metrics. HGA-SIH consistently excels in efficiently managing the number of vehicles while minimizing travel distances, resulting in slight deviations from BKS that remain within practical limits. The research highlights the adaptability and efficacy of HGA-SIH in addressing a wide range of VRPTW scenarios, thereby making substantial contributions to logistics and supply chain optimization.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3373699</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmark testing ; Capacity planning ; Computational modeling ; Customer satisfaction ; Genetic algorithms ; Heuristic ; Heuristic algorithms ; Hybrid Genetic Algorithm (HGA) ; Insertion ; Logistics ; Logistics and Transportation ; Metaheuristics ; Optimization ; Optimization methods ; Solomon Insertion Heuristic ; Supply chain management ; Supply Chain Optimization ; Supply chains ; Timing ; Vehicle routing ; Vehicle Routing Problem with Time Windows (VRPTW) ; Vehicles ; Windows (intervals)</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-534cc4148981ce96c2a31aa66ea2a6801f0199da54bfe700086d3fd6997d57453</citedby><cites>FETCH-LOGICAL-c409t-534cc4148981ce96c2a31aa66ea2a6801f0199da54bfe700086d3fd6997d57453</cites><orcidid>0000-0002-5316-8101 ; 0000-0003-2966-6060 ; 0000-0002-8098-3611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10459172$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27631,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Maroof, Ayesha</creatorcontrib><creatorcontrib>Ayvaz, Berk</creatorcontrib><creatorcontrib>Naeem, Khawar</creatorcontrib><title>Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for a fleet of vehicles. This research introduces a cutting-edge Hybrid Genetic Algorithm-Solomon Insertion Heuristic (HGA-SIH) solution, reinforced by the powerful Solomon Insertion constructive heuristic to solve the VRPTW as an NP-hard problem. The performance of the proposed HGA-SIH is validated against Solomon's VRPTW benchmark instances. The results showcase the outstanding performance of HGA, achieving Best-Known Solutions (BKS) for 11 instances and enhancing BKS solutions in one instance. Experimental findings validate that HGA-SIH consistently delivers results on par with or surpasses those obtained by several cutting-edge algorithms when evaluated based on various solution quality metrics. HGA-SIH consistently excels in efficiently managing the number of vehicles while minimizing travel distances, resulting in slight deviations from BKS that remain within practical limits. The research highlights the adaptability and efficacy of HGA-SIH in addressing a wide range of VRPTW scenarios, thereby making substantial contributions to logistics and supply chain optimization.</description><subject>Benchmark testing</subject><subject>Capacity planning</subject><subject>Computational modeling</subject><subject>Customer satisfaction</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>Hybrid Genetic Algorithm (HGA)</subject><subject>Insertion</subject><subject>Logistics</subject><subject>Logistics and Transportation</subject><subject>Metaheuristics</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Solomon Insertion Heuristic</subject><subject>Supply chain management</subject><subject>Supply Chain Optimization</subject><subject>Supply chains</subject><subject>Timing</subject><subject>Vehicle routing</subject><subject>Vehicle Routing Problem with Time Windows (VRPTW)</subject><subject>Vehicles</subject><subject>Windows (intervals)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtPGzEYXKFWAlF-QXuwxAUOSf32mtsqoglSJBBZ4Gg5tjdxtLtO7Y0QPfWn12FRhS_-NJqZ7zFF8R3BKUJQ_qxms9vVaoohplNCBOFSnhRnGHE5IYzwL5_q0-IipR3Mr8wQE2fF32XY-DR4k8D9fvCd_6MHH3rwlHy_AYu3dfQWzF3vMgVU7SZEP2w7cLWYV9c3oAKr0B7eBXUA9daBZ7f1pnXgMWQ4OzzEsG5dB16yDNS-c7nqbXhN4Or58aF-uf5WfG10m9zFx39ePP26rWeLyfJ-fjerlhNDoRwmjFBjKKKlLJFxkhusCdKac6ex5iVEDURSWs3ounHiuCC3pLH5FsIyQRk5L-5GXxv0Tu2j73R8U0F79Q6EuFE6DsfZleAMEycxYaahUEDNNWusawQqS22ZzV6Xo9c-ht8Hlwa1C4fY5_EVloyXJRccZxYZWSaGlKJr_ndFUB2TU2Ny6pic-kguq36MKu-c-6SgTCKByT8x_ZMK</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Maroof, Ayesha</creator><creator>Ayvaz, Berk</creator><creator>Naeem, Khawar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5316-8101</orcidid><orcidid>https://orcid.org/0000-0003-2966-6060</orcidid><orcidid>https://orcid.org/0000-0002-8098-3611</orcidid></search><sort><creationdate>20240101</creationdate><title>Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)</title><author>Maroof, Ayesha ; Ayvaz, Berk ; Naeem, Khawar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-534cc4148981ce96c2a31aa66ea2a6801f0199da54bfe700086d3fd6997d57453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmark testing</topic><topic>Capacity planning</topic><topic>Computational modeling</topic><topic>Customer satisfaction</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>Hybrid Genetic Algorithm (HGA)</topic><topic>Insertion</topic><topic>Logistics</topic><topic>Logistics and Transportation</topic><topic>Metaheuristics</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Solomon Insertion Heuristic</topic><topic>Supply chain management</topic><topic>Supply Chain Optimization</topic><topic>Supply chains</topic><topic>Timing</topic><topic>Vehicle routing</topic><topic>Vehicle Routing Problem with Time Windows (VRPTW)</topic><topic>Vehicles</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maroof, Ayesha</creatorcontrib><creatorcontrib>Ayvaz, Berk</creatorcontrib><creatorcontrib>Naeem, Khawar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maroof, Ayesha</au><au>Ayvaz, Berk</au><au>Naeem, Khawar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for a fleet of vehicles. This research introduces a cutting-edge Hybrid Genetic Algorithm-Solomon Insertion Heuristic (HGA-SIH) solution, reinforced by the powerful Solomon Insertion constructive heuristic to solve the VRPTW as an NP-hard problem. The performance of the proposed HGA-SIH is validated against Solomon's VRPTW benchmark instances. The results showcase the outstanding performance of HGA, achieving Best-Known Solutions (BKS) for 11 instances and enhancing BKS solutions in one instance. Experimental findings validate that HGA-SIH consistently delivers results on par with or surpasses those obtained by several cutting-edge algorithms when evaluated based on various solution quality metrics. HGA-SIH consistently excels in efficiently managing the number of vehicles while minimizing travel distances, resulting in slight deviations from BKS that remain within practical limits. The research highlights the adaptability and efficacy of HGA-SIH in addressing a wide range of VRPTW scenarios, thereby making substantial contributions to logistics and supply chain optimization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3373699</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5316-8101</orcidid><orcidid>https://orcid.org/0000-0003-2966-6060</orcidid><orcidid>https://orcid.org/0000-0002-8098-3611</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2024_3373699 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Benchmark testing Capacity planning Computational modeling Customer satisfaction Genetic algorithms Heuristic Heuristic algorithms Hybrid Genetic Algorithm (HGA) Insertion Logistics Logistics and Transportation Metaheuristics Optimization Optimization methods Solomon Insertion Heuristic Supply chain management Supply Chain Optimization Supply chains Timing Vehicle routing Vehicle Routing Problem with Time Windows (VRPTW) Vehicles Windows (intervals) |
title | Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logistics%20Optimization%20Using%20Hybrid%20Genetic%20Algorithm%20(HGA):%20A%20Solution%20To%20The%20Vehicle%20Routing%20Problem%20With%20Time%20Windows%20(VRPTW)&rft.jtitle=IEEE%20access&rft.au=Maroof,%20Ayesha&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3373699&rft_dat=%3Cproquest_cross%3E2956886762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956886762&rft_id=info:pmid/&rft_ieee_id=10459172&rft_doaj_id=oai_doaj_org_article_76523e9235cf4070a6a5fdef7188ad5d&rfr_iscdi=true |