Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)

The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024-01, Vol.12, p.1-1
Hauptverfasser: Maroof, Ayesha, Ayvaz, Berk, Naeem, Khawar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 12
creator Maroof, Ayesha
Ayvaz, Berk
Naeem, Khawar
description The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for a fleet of vehicles. This research introduces a cutting-edge Hybrid Genetic Algorithm-Solomon Insertion Heuristic (HGA-SIH) solution, reinforced by the powerful Solomon Insertion constructive heuristic to solve the VRPTW as an NP-hard problem. The performance of the proposed HGA-SIH is validated against Solomon's VRPTW benchmark instances. The results showcase the outstanding performance of HGA, achieving Best-Known Solutions (BKS) for 11 instances and enhancing BKS solutions in one instance. Experimental findings validate that HGA-SIH consistently delivers results on par with or surpasses those obtained by several cutting-edge algorithms when evaluated based on various solution quality metrics. HGA-SIH consistently excels in efficiently managing the number of vehicles while minimizing travel distances, resulting in slight deviations from BKS that remain within practical limits. The research highlights the adaptability and efficacy of HGA-SIH in addressing a wide range of VRPTW scenarios, thereby making substantial contributions to logistics and supply chain optimization.
doi_str_mv 10.1109/ACCESS.2024.3373699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2024_3373699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10459172</ieee_id><doaj_id>oai_doaj_org_article_76523e9235cf4070a6a5fdef7188ad5d</doaj_id><sourcerecordid>2956886762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-534cc4148981ce96c2a31aa66ea2a6801f0199da54bfe700086d3fd6997d57453</originalsourceid><addsrcrecordid>eNpNUUtPGzEYXKFWAlF-QXuwxAUOSf32mtsqoglSJBBZ4Gg5tjdxtLtO7Y0QPfWn12FRhS_-NJqZ7zFF8R3BKUJQ_qxms9vVaoohplNCBOFSnhRnGHE5IYzwL5_q0-IipR3Mr8wQE2fF32XY-DR4k8D9fvCd_6MHH3rwlHy_AYu3dfQWzF3vMgVU7SZEP2w7cLWYV9c3oAKr0B7eBXUA9daBZ7f1pnXgMWQ4OzzEsG5dB16yDNS-c7nqbXhN4Or58aF-uf5WfG10m9zFx39ePP26rWeLyfJ-fjerlhNDoRwmjFBjKKKlLJFxkhusCdKac6ex5iVEDURSWs3ounHiuCC3pLH5FsIyQRk5L-5GXxv0Tu2j73R8U0F79Q6EuFE6DsfZleAMEycxYaahUEDNNWusawQqS22ZzV6Xo9c-ht8Hlwa1C4fY5_EVloyXJRccZxYZWSaGlKJr_ndFUB2TU2Ny6pic-kguq36MKu-c-6SgTCKByT8x_ZMK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956886762</pqid></control><display><type>article</type><title>Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Maroof, Ayesha ; Ayvaz, Berk ; Naeem, Khawar</creator><creatorcontrib>Maroof, Ayesha ; Ayvaz, Berk ; Naeem, Khawar</creatorcontrib><description>The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for a fleet of vehicles. This research introduces a cutting-edge Hybrid Genetic Algorithm-Solomon Insertion Heuristic (HGA-SIH) solution, reinforced by the powerful Solomon Insertion constructive heuristic to solve the VRPTW as an NP-hard problem. The performance of the proposed HGA-SIH is validated against Solomon's VRPTW benchmark instances. The results showcase the outstanding performance of HGA, achieving Best-Known Solutions (BKS) for 11 instances and enhancing BKS solutions in one instance. Experimental findings validate that HGA-SIH consistently delivers results on par with or surpasses those obtained by several cutting-edge algorithms when evaluated based on various solution quality metrics. HGA-SIH consistently excels in efficiently managing the number of vehicles while minimizing travel distances, resulting in slight deviations from BKS that remain within practical limits. The research highlights the adaptability and efficacy of HGA-SIH in addressing a wide range of VRPTW scenarios, thereby making substantial contributions to logistics and supply chain optimization.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3373699</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Benchmark testing ; Capacity planning ; Computational modeling ; Customer satisfaction ; Genetic algorithms ; Heuristic ; Heuristic algorithms ; Hybrid Genetic Algorithm (HGA) ; Insertion ; Logistics ; Logistics and Transportation ; Metaheuristics ; Optimization ; Optimization methods ; Solomon Insertion Heuristic ; Supply chain management ; Supply Chain Optimization ; Supply chains ; Timing ; Vehicle routing ; Vehicle Routing Problem with Time Windows (VRPTW) ; Vehicles ; Windows (intervals)</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-534cc4148981ce96c2a31aa66ea2a6801f0199da54bfe700086d3fd6997d57453</citedby><cites>FETCH-LOGICAL-c409t-534cc4148981ce96c2a31aa66ea2a6801f0199da54bfe700086d3fd6997d57453</cites><orcidid>0000-0002-5316-8101 ; 0000-0003-2966-6060 ; 0000-0002-8098-3611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10459172$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,27631,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Maroof, Ayesha</creatorcontrib><creatorcontrib>Ayvaz, Berk</creatorcontrib><creatorcontrib>Naeem, Khawar</creatorcontrib><title>Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for a fleet of vehicles. This research introduces a cutting-edge Hybrid Genetic Algorithm-Solomon Insertion Heuristic (HGA-SIH) solution, reinforced by the powerful Solomon Insertion constructive heuristic to solve the VRPTW as an NP-hard problem. The performance of the proposed HGA-SIH is validated against Solomon's VRPTW benchmark instances. The results showcase the outstanding performance of HGA, achieving Best-Known Solutions (BKS) for 11 instances and enhancing BKS solutions in one instance. Experimental findings validate that HGA-SIH consistently delivers results on par with or surpasses those obtained by several cutting-edge algorithms when evaluated based on various solution quality metrics. HGA-SIH consistently excels in efficiently managing the number of vehicles while minimizing travel distances, resulting in slight deviations from BKS that remain within practical limits. The research highlights the adaptability and efficacy of HGA-SIH in addressing a wide range of VRPTW scenarios, thereby making substantial contributions to logistics and supply chain optimization.</description><subject>Benchmark testing</subject><subject>Capacity planning</subject><subject>Computational modeling</subject><subject>Customer satisfaction</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Heuristic algorithms</subject><subject>Hybrid Genetic Algorithm (HGA)</subject><subject>Insertion</subject><subject>Logistics</subject><subject>Logistics and Transportation</subject><subject>Metaheuristics</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Solomon Insertion Heuristic</subject><subject>Supply chain management</subject><subject>Supply Chain Optimization</subject><subject>Supply chains</subject><subject>Timing</subject><subject>Vehicle routing</subject><subject>Vehicle Routing Problem with Time Windows (VRPTW)</subject><subject>Vehicles</subject><subject>Windows (intervals)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtPGzEYXKFWAlF-QXuwxAUOSf32mtsqoglSJBBZ4Gg5tjdxtLtO7Y0QPfWn12FRhS_-NJqZ7zFF8R3BKUJQ_qxms9vVaoohplNCBOFSnhRnGHE5IYzwL5_q0-IipR3Mr8wQE2fF32XY-DR4k8D9fvCd_6MHH3rwlHy_AYu3dfQWzF3vMgVU7SZEP2w7cLWYV9c3oAKr0B7eBXUA9daBZ7f1pnXgMWQ4OzzEsG5dB16yDNS-c7nqbXhN4Or58aF-uf5WfG10m9zFx39ePP26rWeLyfJ-fjerlhNDoRwmjFBjKKKlLJFxkhusCdKac6ex5iVEDURSWs3ounHiuCC3pLH5FsIyQRk5L-5GXxv0Tu2j73R8U0F79Q6EuFE6DsfZleAMEycxYaahUEDNNWusawQqS22ZzV6Xo9c-ht8Hlwa1C4fY5_EVloyXJRccZxYZWSaGlKJr_ndFUB2TU2Ny6pic-kguq36MKu-c-6SgTCKByT8x_ZMK</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Maroof, Ayesha</creator><creator>Ayvaz, Berk</creator><creator>Naeem, Khawar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5316-8101</orcidid><orcidid>https://orcid.org/0000-0003-2966-6060</orcidid><orcidid>https://orcid.org/0000-0002-8098-3611</orcidid></search><sort><creationdate>20240101</creationdate><title>Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)</title><author>Maroof, Ayesha ; Ayvaz, Berk ; Naeem, Khawar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-534cc4148981ce96c2a31aa66ea2a6801f0199da54bfe700086d3fd6997d57453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmark testing</topic><topic>Capacity planning</topic><topic>Computational modeling</topic><topic>Customer satisfaction</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Heuristic algorithms</topic><topic>Hybrid Genetic Algorithm (HGA)</topic><topic>Insertion</topic><topic>Logistics</topic><topic>Logistics and Transportation</topic><topic>Metaheuristics</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Solomon Insertion Heuristic</topic><topic>Supply chain management</topic><topic>Supply Chain Optimization</topic><topic>Supply chains</topic><topic>Timing</topic><topic>Vehicle routing</topic><topic>Vehicle Routing Problem with Time Windows (VRPTW)</topic><topic>Vehicles</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maroof, Ayesha</creatorcontrib><creatorcontrib>Ayvaz, Berk</creatorcontrib><creatorcontrib>Naeem, Khawar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maroof, Ayesha</au><au>Ayvaz, Berk</au><au>Naeem, Khawar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for a fleet of vehicles. This research introduces a cutting-edge Hybrid Genetic Algorithm-Solomon Insertion Heuristic (HGA-SIH) solution, reinforced by the powerful Solomon Insertion constructive heuristic to solve the VRPTW as an NP-hard problem. The performance of the proposed HGA-SIH is validated against Solomon's VRPTW benchmark instances. The results showcase the outstanding performance of HGA, achieving Best-Known Solutions (BKS) for 11 instances and enhancing BKS solutions in one instance. Experimental findings validate that HGA-SIH consistently delivers results on par with or surpasses those obtained by several cutting-edge algorithms when evaluated based on various solution quality metrics. HGA-SIH consistently excels in efficiently managing the number of vehicles while minimizing travel distances, resulting in slight deviations from BKS that remain within practical limits. The research highlights the adaptability and efficacy of HGA-SIH in addressing a wide range of VRPTW scenarios, thereby making substantial contributions to logistics and supply chain optimization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3373699</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5316-8101</orcidid><orcidid>https://orcid.org/0000-0003-2966-6060</orcidid><orcidid>https://orcid.org/0000-0002-8098-3611</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2024_3373699
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Benchmark testing
Capacity planning
Computational modeling
Customer satisfaction
Genetic algorithms
Heuristic
Heuristic algorithms
Hybrid Genetic Algorithm (HGA)
Insertion
Logistics
Logistics and Transportation
Metaheuristics
Optimization
Optimization methods
Solomon Insertion Heuristic
Supply chain management
Supply Chain Optimization
Supply chains
Timing
Vehicle routing
Vehicle Routing Problem with Time Windows (VRPTW)
Vehicles
Windows (intervals)
title Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logistics%20Optimization%20Using%20Hybrid%20Genetic%20Algorithm%20(HGA):%20A%20Solution%20To%20The%20Vehicle%20Routing%20Problem%20With%20Time%20Windows%20(VRPTW)&rft.jtitle=IEEE%20access&rft.au=Maroof,%20Ayesha&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3373699&rft_dat=%3Cproquest_cross%3E2956886762%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956886762&rft_id=info:pmid/&rft_ieee_id=10459172&rft_doaj_id=oai_doaj_org_article_76523e9235cf4070a6a5fdef7188ad5d&rfr_iscdi=true