Logistics Optimization Using Hybrid Genetic Algorithm (HGA): A Solution To The Vehicle Routing Problem With Time Windows (VRPTW)
The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Vehicle Routing Problem with Time Windows (VRPTW) is paramount in elevating operational efficiency, driving cost reductions, and enhancing customer satisfaction. It is a renowned challenge with diverse real-world applications, where the core objective is determining the most efficient routes for a fleet of vehicles. This research introduces a cutting-edge Hybrid Genetic Algorithm-Solomon Insertion Heuristic (HGA-SIH) solution, reinforced by the powerful Solomon Insertion constructive heuristic to solve the VRPTW as an NP-hard problem. The performance of the proposed HGA-SIH is validated against Solomon's VRPTW benchmark instances. The results showcase the outstanding performance of HGA, achieving Best-Known Solutions (BKS) for 11 instances and enhancing BKS solutions in one instance. Experimental findings validate that HGA-SIH consistently delivers results on par with or surpasses those obtained by several cutting-edge algorithms when evaluated based on various solution quality metrics. HGA-SIH consistently excels in efficiently managing the number of vehicles while minimizing travel distances, resulting in slight deviations from BKS that remain within practical limits. The research highlights the adaptability and efficacy of HGA-SIH in addressing a wide range of VRPTW scenarios, thereby making substantial contributions to logistics and supply chain optimization. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2024.3373699 |