A Survey on Attacks and Their Countermeasures in Deep Learning: Applications in Deep Neural Networks, Federated, Transfer, and Deep Reinforcement Learning

Deep Learning (DL) techniques are being used in various critical applications like self-driving cars. DL techniques such as Deep Neural Networks (DNN), Deep Reinforcement Learning (DRL), Federated Learning (FL), and Transfer Learning (TL) are prone to adversarial attacks, which can make the DL techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.120095-120130
Hauptverfasser: Ali, Haider, Chen, Dian, Harrington, Matthew, Salazar, Nathaniel, Ameedi, Mohannad Al, Khan, Ahmad Faraz, Butt, Ali R., Cho, Jin-Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120130
container_issue
container_start_page 120095
container_title IEEE access
container_volume 11
creator Ali, Haider
Chen, Dian
Harrington, Matthew
Salazar, Nathaniel
Ameedi, Mohannad Al
Khan, Ahmad Faraz
Butt, Ali R.
Cho, Jin-Hee
description Deep Learning (DL) techniques are being used in various critical applications like self-driving cars. DL techniques such as Deep Neural Networks (DNN), Deep Reinforcement Learning (DRL), Federated Learning (FL), and Transfer Learning (TL) are prone to adversarial attacks, which can make the DL techniques perform poorly. Developing such attacks and their countermeasures is the prerequisite for making artificial intelligence techniques robust, secure, and deployable. Previous survey papers only focused on one or two techniques and are outdated. They do not discuss application domains, datasets, and testbeds in detail. There is also a need to discuss the commonalities and differences among DL techniques. In this paper, we comprehensively discussed the attacks and defenses in four popular DL models, including DNN, DRL, FL, and TL. We also highlighted the application domains, datasets, metrics, and testbeds in these fields. One of our key contributions is to discuss the commonalities and differences among these DL techniques. Insights, lessons, and future research directions are also highlighted in detail.
doi_str_mv 10.1109/ACCESS.2023.3326410
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2023_3326410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10288459</ieee_id><doaj_id>oai_doaj_org_article_7edc1c85f14a42209fd09d65cc0749a6</doaj_id><sourcerecordid>2885652110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-2e30722cd86b859e3cbbc36e0caca3d4c51256dca6c22cd4800d6667e0c2bb263</originalsourceid><addsrcrecordid>eNpNkcFu1DAQhiMEElXpE8DBEtfdxbFjJ-EWhRYqrYrU3Z4tx54Ub3ftMHZAfRWeluymauvLWDP__81If5Z9zOkqz2n9pWnby81mxSjjK86ZLHL6JjtjuayXXHD59tX_fXYR445Or5paojzL_jVkM-IfeCTBkyYlbR4i0d6S7S9wSNow-gR4AB1HhEicJ98ABrIGjd75-6-kGYa9Mzq54F_GNzCi3k8l_Q34EBfkCiygTmAXZIvaxx5wcVpzkt-C831AAwfw6Zn9IXvX632Ei6d6nt1dXW7bH8v1z-_XbbNemoLWacmA05IxYyvZVaIGbrrOcAnUaKO5LYzImZDWaGmOqqKi1Eopy0nAuo5Jfp5dz1wb9E4N6A4aH1XQTp0aAe-VxuTMHlQJ1uSmEn1e6IIxWveW1lYKY2hZ1PrI-jyzBgy_R4hJ7cKIfjpfsaoSUrApsknFZ5XBECNC_7w1p-qYqZozVcdM1VOmk-vT7HIA8MoxgQtR8_81K55_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885652110</pqid></control><display><type>article</type><title>A Survey on Attacks and Their Countermeasures in Deep Learning: Applications in Deep Neural Networks, Federated, Transfer, and Deep Reinforcement Learning</title><source>Electronic Journals Library</source><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Ali, Haider ; Chen, Dian ; Harrington, Matthew ; Salazar, Nathaniel ; Ameedi, Mohannad Al ; Khan, Ahmad Faraz ; Butt, Ali R. ; Cho, Jin-Hee</creator><creatorcontrib>Ali, Haider ; Chen, Dian ; Harrington, Matthew ; Salazar, Nathaniel ; Ameedi, Mohannad Al ; Khan, Ahmad Faraz ; Butt, Ali R. ; Cho, Jin-Hee</creatorcontrib><description>Deep Learning (DL) techniques are being used in various critical applications like self-driving cars. DL techniques such as Deep Neural Networks (DNN), Deep Reinforcement Learning (DRL), Federated Learning (FL), and Transfer Learning (TL) are prone to adversarial attacks, which can make the DL techniques perform poorly. Developing such attacks and their countermeasures is the prerequisite for making artificial intelligence techniques robust, secure, and deployable. Previous survey papers only focused on one or two techniques and are outdated. They do not discuss application domains, datasets, and testbeds in detail. There is also a need to discuss the commonalities and differences among DL techniques. In this paper, we comprehensively discussed the attacks and defenses in four popular DL models, including DNN, DRL, FL, and TL. We also highlighted the application domains, datasets, metrics, and testbeds in these fields. One of our key contributions is to discuss the commonalities and differences among these DL techniques. Insights, lessons, and future research directions are also highlighted in detail.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3326410</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Attacks ; Autonomous cars ; Datasets ; Deep learning ; deep neural networks ; deep reinforcement learning ; defenses ; Federated learning ; Machine learning ; Measurement ; Neural networks ; Reinforcement learning ; Security ; Surveys ; Test stands ; Transfer learning</subject><ispartof>IEEE access, 2023, Vol.11, p.120095-120130</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-2e30722cd86b859e3cbbc36e0caca3d4c51256dca6c22cd4800d6667e0c2bb263</citedby><cites>FETCH-LOGICAL-c409t-2e30722cd86b859e3cbbc36e0caca3d4c51256dca6c22cd4800d6667e0c2bb263</cites><orcidid>0000-0002-5908-4662 ; 0009-0008-0851-0394 ; 0009-0000-9313-4910 ; 0009-0000-7641-454X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10288459$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ali, Haider</creatorcontrib><creatorcontrib>Chen, Dian</creatorcontrib><creatorcontrib>Harrington, Matthew</creatorcontrib><creatorcontrib>Salazar, Nathaniel</creatorcontrib><creatorcontrib>Ameedi, Mohannad Al</creatorcontrib><creatorcontrib>Khan, Ahmad Faraz</creatorcontrib><creatorcontrib>Butt, Ali R.</creatorcontrib><creatorcontrib>Cho, Jin-Hee</creatorcontrib><title>A Survey on Attacks and Their Countermeasures in Deep Learning: Applications in Deep Neural Networks, Federated, Transfer, and Deep Reinforcement Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Deep Learning (DL) techniques are being used in various critical applications like self-driving cars. DL techniques such as Deep Neural Networks (DNN), Deep Reinforcement Learning (DRL), Federated Learning (FL), and Transfer Learning (TL) are prone to adversarial attacks, which can make the DL techniques perform poorly. Developing such attacks and their countermeasures is the prerequisite for making artificial intelligence techniques robust, secure, and deployable. Previous survey papers only focused on one or two techniques and are outdated. They do not discuss application domains, datasets, and testbeds in detail. There is also a need to discuss the commonalities and differences among DL techniques. In this paper, we comprehensively discussed the attacks and defenses in four popular DL models, including DNN, DRL, FL, and TL. We also highlighted the application domains, datasets, metrics, and testbeds in these fields. One of our key contributions is to discuss the commonalities and differences among these DL techniques. Insights, lessons, and future research directions are also highlighted in detail.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Attacks</subject><subject>Autonomous cars</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>deep neural networks</subject><subject>deep reinforcement learning</subject><subject>defenses</subject><subject>Federated learning</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Neural networks</subject><subject>Reinforcement learning</subject><subject>Security</subject><subject>Surveys</subject><subject>Test stands</subject><subject>Transfer learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFu1DAQhiMEElXpE8DBEtfdxbFjJ-EWhRYqrYrU3Z4tx54Ub3ftMHZAfRWeluymauvLWDP__81If5Z9zOkqz2n9pWnby81mxSjjK86ZLHL6JjtjuayXXHD59tX_fXYR445Or5paojzL_jVkM-IfeCTBkyYlbR4i0d6S7S9wSNow-gR4AB1HhEicJ98ABrIGjd75-6-kGYa9Mzq54F_GNzCi3k8l_Q34EBfkCiygTmAXZIvaxx5wcVpzkt-C831AAwfw6Zn9IXvX632Ei6d6nt1dXW7bH8v1z-_XbbNemoLWacmA05IxYyvZVaIGbrrOcAnUaKO5LYzImZDWaGmOqqKi1Eopy0nAuo5Jfp5dz1wb9E4N6A4aH1XQTp0aAe-VxuTMHlQJ1uSmEn1e6IIxWveW1lYKY2hZ1PrI-jyzBgy_R4hJ7cKIfjpfsaoSUrApsknFZ5XBECNC_7w1p-qYqZozVcdM1VOmk-vT7HIA8MoxgQtR8_81K55_</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ali, Haider</creator><creator>Chen, Dian</creator><creator>Harrington, Matthew</creator><creator>Salazar, Nathaniel</creator><creator>Ameedi, Mohannad Al</creator><creator>Khan, Ahmad Faraz</creator><creator>Butt, Ali R.</creator><creator>Cho, Jin-Hee</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5908-4662</orcidid><orcidid>https://orcid.org/0009-0008-0851-0394</orcidid><orcidid>https://orcid.org/0009-0000-9313-4910</orcidid><orcidid>https://orcid.org/0009-0000-7641-454X</orcidid></search><sort><creationdate>2023</creationdate><title>A Survey on Attacks and Their Countermeasures in Deep Learning: Applications in Deep Neural Networks, Federated, Transfer, and Deep Reinforcement Learning</title><author>Ali, Haider ; Chen, Dian ; Harrington, Matthew ; Salazar, Nathaniel ; Ameedi, Mohannad Al ; Khan, Ahmad Faraz ; Butt, Ali R. ; Cho, Jin-Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-2e30722cd86b859e3cbbc36e0caca3d4c51256dca6c22cd4800d6667e0c2bb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Attacks</topic><topic>Autonomous cars</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>deep neural networks</topic><topic>deep reinforcement learning</topic><topic>defenses</topic><topic>Federated learning</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Neural networks</topic><topic>Reinforcement learning</topic><topic>Security</topic><topic>Surveys</topic><topic>Test stands</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Haider</creatorcontrib><creatorcontrib>Chen, Dian</creatorcontrib><creatorcontrib>Harrington, Matthew</creatorcontrib><creatorcontrib>Salazar, Nathaniel</creatorcontrib><creatorcontrib>Ameedi, Mohannad Al</creatorcontrib><creatorcontrib>Khan, Ahmad Faraz</creatorcontrib><creatorcontrib>Butt, Ali R.</creatorcontrib><creatorcontrib>Cho, Jin-Hee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Haider</au><au>Chen, Dian</au><au>Harrington, Matthew</au><au>Salazar, Nathaniel</au><au>Ameedi, Mohannad Al</au><au>Khan, Ahmad Faraz</au><au>Butt, Ali R.</au><au>Cho, Jin-Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Attacks and Their Countermeasures in Deep Learning: Applications in Deep Neural Networks, Federated, Transfer, and Deep Reinforcement Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>120095</spage><epage>120130</epage><pages>120095-120130</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Deep Learning (DL) techniques are being used in various critical applications like self-driving cars. DL techniques such as Deep Neural Networks (DNN), Deep Reinforcement Learning (DRL), Federated Learning (FL), and Transfer Learning (TL) are prone to adversarial attacks, which can make the DL techniques perform poorly. Developing such attacks and their countermeasures is the prerequisite for making artificial intelligence techniques robust, secure, and deployable. Previous survey papers only focused on one or two techniques and are outdated. They do not discuss application domains, datasets, and testbeds in detail. There is also a need to discuss the commonalities and differences among DL techniques. In this paper, we comprehensively discussed the attacks and defenses in four popular DL models, including DNN, DRL, FL, and TL. We also highlighted the application domains, datasets, metrics, and testbeds in these fields. One of our key contributions is to discuss the commonalities and differences among these DL techniques. Insights, lessons, and future research directions are also highlighted in detail.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3326410</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-5908-4662</orcidid><orcidid>https://orcid.org/0009-0008-0851-0394</orcidid><orcidid>https://orcid.org/0009-0000-9313-4910</orcidid><orcidid>https://orcid.org/0009-0000-7641-454X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.120095-120130
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2023_3326410
source Electronic Journals Library; DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals
subjects Artificial intelligence
Artificial neural networks
Attacks
Autonomous cars
Datasets
Deep learning
deep neural networks
deep reinforcement learning
defenses
Federated learning
Machine learning
Measurement
Neural networks
Reinforcement learning
Security
Surveys
Test stands
Transfer learning
title A Survey on Attacks and Their Countermeasures in Deep Learning: Applications in Deep Neural Networks, Federated, Transfer, and Deep Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Attacks%20and%20Their%20Countermeasures%20in%20Deep%20Learning:%20Applications%20in%20Deep%20Neural%20Networks,%20Federated,%20Transfer,%20and%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE%20access&rft.au=Ali,%20Haider&rft.date=2023&rft.volume=11&rft.spage=120095&rft.epage=120130&rft.pages=120095-120130&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3326410&rft_dat=%3Cproquest_cross%3E2885652110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885652110&rft_id=info:pmid/&rft_ieee_id=10288459&rft_doaj_id=oai_doaj_org_article_7edc1c85f14a42209fd09d65cc0749a6&rfr_iscdi=true