A Survey on Attacks and Their Countermeasures in Deep Learning: Applications in Deep Neural Networks, Federated, Transfer, and Deep Reinforcement Learning
Deep Learning (DL) techniques are being used in various critical applications like self-driving cars. DL techniques such as Deep Neural Networks (DNN), Deep Reinforcement Learning (DRL), Federated Learning (FL), and Transfer Learning (TL) are prone to adversarial attacks, which can make the DL techn...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.120095-120130 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep Learning (DL) techniques are being used in various critical applications like self-driving cars. DL techniques such as Deep Neural Networks (DNN), Deep Reinforcement Learning (DRL), Federated Learning (FL), and Transfer Learning (TL) are prone to adversarial attacks, which can make the DL techniques perform poorly. Developing such attacks and their countermeasures is the prerequisite for making artificial intelligence techniques robust, secure, and deployable. Previous survey papers only focused on one or two techniques and are outdated. They do not discuss application domains, datasets, and testbeds in detail. There is also a need to discuss the commonalities and differences among DL techniques. In this paper, we comprehensively discussed the attacks and defenses in four popular DL models, including DNN, DRL, FL, and TL. We also highlighted the application domains, datasets, metrics, and testbeds in these fields. One of our key contributions is to discuss the commonalities and differences among these DL techniques. Insights, lessons, and future research directions are also highlighted in detail. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3326410 |