Blood pressure estimation from photoplethysmography by considering intra- and inter-subject variabilities: guidelines for a fair assessment

Cardiovascular diseases are the leading causes of death, and blood pressure (BP) monitoring is essential for prevention, diagnosis, assessment, and treatment. Photoplethysmography (PPG) is a low-cost opto-electronic technique for BP measurement that allows the acquisition of a modulated light signal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Costa, Thiago Bulhoes da Silva, Dias, Felipe Meneguitti, Cardenas, Diego Armando Cardona, De Toledo, Marcelo Arruda Fiuza, De Lima, Daniel Mario, Krieger, Jose Eduardo, Gutierrez, Marco Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardiovascular diseases are the leading causes of death, and blood pressure (BP) monitoring is essential for prevention, diagnosis, assessment, and treatment. Photoplethysmography (PPG) is a low-cost opto-electronic technique for BP measurement that allows the acquisition of a modulated light signal highly correlated with BP. There are several reports of methods to estimate BP from PPG with impressive results; in this study, we demonstrate that the previous results are excessively optimistic because of their train/test split configuration. To manage this limitation, we considered intra- and inter-subject data arrangements and demonstrated how they affect the results of feature-based BP estimation algorithms (i.e., XGBoost, LightGBM, and CatBoost) and signal-based algorithms (i.e., Residual U-Net, ResNet-18, and ResNet-LSTM). Inter-subject configuration performance is inferior to intra-subject configuration performance, regardless of the model. We also showed that, using only demographic attributes (i.e., age, sex, weight, and subject index number), a regression model achieved results comparable to those obtained in an intra-subject scenario.Although limited to a public clinical database, our findings suggest that algorithms that use an intra-subject setting without a calibration strategy may be learning to identify patients and not predict BP.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3284458