Ultra-Wideband Compact Millimeter-Wave Printed Ridge Gap Waveguide Directional Couplers for 5G Applications
A compact ultra-wideband printed ridge gap waveguide directional couplers for millimeter-wave applications are presented in this paper. A multi-layer coupling technique between two resonant patches is adopted to achieve a wider operating bandwidth with better amplitude and phase balance compared to...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.90706-90714 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A compact ultra-wideband printed ridge gap waveguide directional couplers for millimeter-wave applications are presented in this paper. A multi-layer coupling technique between two resonant patches is adopted to achieve a wider operating bandwidth with better amplitude and phase balance compared to single-layer technology. For this purpose, a systematic design procedure is deployed to achieve several coupling values in the range of 3-10 dB over a wide frequency bandwidth centered at 30 GHz. A 3-dB hybrid coupler is fabricated and measured, where a bandwidth of 12 GHz (about 38% fractional bandwidth) from 25 GHz to 37 GHz is achieved. In addition, the phase balance is 90^{o} ± 5^{o} over 38% fractional bandwidth with an amplitude balance of 3.4 ± 0.5 dB over a 26.5% centered at 30 GHz. The proposed couplers with superior characteristics such as compactness, low loss, and low dispersion are considered a good candidate for millimeter-wave applications such as the fifth-generation (5G) wireless communications. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3201865 |