Adaptive Neural Task Space Control for Robot Manipulators With Unknown and Closed Control Architecture Under Random Vibrations

Robot manipulators are now used in various domains and environments, where they can be subjected to random vibrations. Random vibrations mainly affect the torque control signal, and a torque controller is therefore required to be designed for stabilization purposes. However, for security or intellec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.60765-60777
Hauptverfasser: Aba, Charles Medzo, Ahanda, Joseph Jean Baptiste Mvogo, Melingui, Achille, Merzouki, Rochdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Robot manipulators are now used in various domains and environments, where they can be subjected to random vibrations. Random vibrations mainly affect the torque control signal, and a torque controller is therefore required to be designed for stabilization purposes. However, for security or intellectual property protection reasons, most commercialized robots are manufactured with unknown and inaccessible torque controller interface such that the user can only design a position/velocity controller. This paper proposes an adaptive task-space velocity controller free from the inner controller's structure and exhibiting stochastic and deterministic disturbances rejection to deal with these issues. To deal with the unknown inner controller, the paper exploits the fact that most torque controllers use a velocity feedback term, and it considers the other terms as an unknown functions vector. To cope with random disturbances, it is demonstrated that the random excitation matrix can be linearly parameterized, and therefore, a direct adaptive method is constructed. Using radial basis function neural network (RBF NN), an indirect adaptive method is developed to cope with deterministic uncertainties. Through Lyapunov theory, the paper proves that all the closed-loop signals are bounded in probability. The effectiveness of the proposed approach is further demonstrated through simulation comparisons.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3180833