Fully Adaptive Recurrent Neuro-Fuzzy Control for Power System Stability Enhancement in Multi Machine System

Voltage instability in a power system produces low-frequency oscillations (LFOs), causing adverse effects in power distribution. Intelligent control schemes can overcome the limitations of fixed-parameter structures in power system stabilizers (PSS). Flexible alternating current transmission system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.36464-36476
Hauptverfasser: Saleem, Bushra, Badar, Rabiah, Manzoor, Awais, Judge, Malik Ali, Boudjadar, Jalil, Islam, Saif Ul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Voltage instability in a power system produces low-frequency oscillations (LFOs), causing adverse effects in power distribution. Intelligent control schemes can overcome the limitations of fixed-parameter structures in power system stabilizers (PSS). Flexible alternating current transmission system (FACTS) control along with some supplementary control have remarkable potential in damping the oscillations. This paper proposes an adaptive neurofuzzy based recurrent wavelet control (ANRWC) scheme to enhance the power system stability. The proposed scheme utilizes recurrent Gaussian as antecedent part's membership function and recurrent wavelet function in consequent parts. Our scheme uses gradient descent, adadelta, adaptive moment estimation (ADAM) and proximal gradient descent algorithms for optimization in which parameters of the scheme are updated using a back-propagation algorithm. A multi-machine power system is used for testing the controller. We evaluate the proposed control scheme in comparison to conventional lead-lag control and an adaptive neurofuzzy takagi sugeno kang (ANFTSK) control scheme. For comparison, we calculate the performance indices (PIs) for different controllers. Both quantitative and qualitative evaluations assert the effectiveness of the proposed control as compared to other schemes.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3164455