ELU-Net: An Efficient and Lightweight U-Net for Medical Image Segmentation
Recent years have witnessed a growing interest in the use of U-Net and its improvement. It is one of the classic semantic segmentation networks with an encoder-decoder architecture and is widely used in medical image segmentation. In the series versions of U-Net, U-Net++ has been developed as an imp...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.35932-35941 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent years have witnessed a growing interest in the use of U-Net and its improvement. It is one of the classic semantic segmentation networks with an encoder-decoder architecture and is widely used in medical image segmentation. In the series versions of U-Net, U-Net++ has been developed as an improved U-Net by designing an architecture with nested and dense skip connections, and U-Net 3+ has been developed as an improved U-Net++ by taking advantage of full-scale skip connections and deep supervision on full-scale aggregated feature maps. Each network architecture has its own advantages in the use of the encoder and decoder. In this paper, we propose an efficient and lightweight U-Net (ELU-Net) with deep skip connections. The deep skip connections include same- and large-scale skip connections from the encoder to fully extract the features of the encoder. In addition, the proposed ELU-Net with different loss functions is discussed to improve the effect of brain tumor learning including WT (whole tumor), TC (tumor core) and ET (enhance tumor) and a new loss function DFK is designed. The effectiveness of the proposed method is demonstrated for a brain tumor dataset used in the BraTS 2018 Challenge and liver dataset used in the ISBI LiTS 2017 Challenge. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3163711 |