PersianQuAD: The Native Question Answering Dataset for the Persian Language

Developing Question Answering systems (QA) is one of the main goals in Artificial Intelligence. With the advent of Deep Learning (DL) techniques, QA systems have witnessed significant advances. Although DL performs very well on QA, it requires a considerable amount of annotated data for training. Ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.26045-26057
Hauptverfasser: Kazemi, Arefeh, Mozafari, Jamshid, Nematbakhsh, Mohammad Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing Question Answering systems (QA) is one of the main goals in Artificial Intelligence. With the advent of Deep Learning (DL) techniques, QA systems have witnessed significant advances. Although DL performs very well on QA, it requires a considerable amount of annotated data for training. Many annotated datasets have been built for the QA task; most of them are exclusively in English. In order to address the need for a high-quality QA dataset in the Persian language, we present PersianQuAD, the native QA dataset for the Persian language. We create PersianQuAD in four steps: 1) Wikipedia article selection, 2) question-answer collection, 3) three-candidates test set preparation, and 4) Data Quality Monitoring. PersianQuAD consists of approximately 20,000 questions and answers made by native annotators on a set of Persian Wikipedia articles. The answer to each question is a segment of the corresponding article text. To better understand PersianQuAD and ensure its representativeness, we analyze PersianQuAD and show it contains questions of varying types and difficulties. We also present three versions of a deep learning-based QA system trained with PersianQuAD. Our best system achieves an F1 score of 82.97% which is comparable to that of QA systems on English SQuAD, made by the Stanford University. This shows that PersianQuAD performs well for training deep-learning-based QA systems. Human performance on PersianQuAD is significantly better (96.49%), demonstrating that PersianQuAD is challenging enough and there is still plenty of room for future improvement. PersianQuAD and all QA models implemented in this paper are freely available.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3157289