A D-Band Power Amplifier in 65-nm CMOS by Adopting Simultaneous Output Power-and Gain-Matched Gmax-Core
This paper proposes a simultaneous output power- and gain-matching technique in a sub-THz power amplifier (PA) design based on a maximum achievable gain ( G_{max} ) core. The optimum combination of three-passive-elements-based embedding networks for implementing the G_{max} -core is chosen consider...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.99039-99049 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a simultaneous output power- and gain-matching technique in a sub-THz power amplifier (PA) design based on a maximum achievable gain ( G_{max} ) core. The optimum combination of three-passive-elements-based embedding networks for implementing the G_{max} -core is chosen considering the small- and large-signal performances at the same time. By adopting the proposed technique, the simultaneous output power- and gain-matching can be achieved, maximizing the small-signal power gain and large-signal output power simultaneously. A 150 GHz single-ended two-stage PA without power combining circuit is implemented in a 65-nm CMOS process based on the proposed technique. The amplifier achieves a peak power gain of 17.5 dB, peak power added efficiency (PAE) of 13.3 and 16.1 %, saturated output power ( P_{sat} ) of 10.3 and 9.4 dBm, and DC power consumption of 86.3 and 52.4 mW, respectively, under the bias voltage of 1.2 and 1 V, which corresponds to the highest PAE, gain per stage and P_{out} per single transistor among other reported CMOS D-band PAs. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3096423 |